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Foreword

There have been tremendous advances in the realism of computer-generated
images over the last twenty years. This is the result of a great deal of
research and is documented in thousands of technical papers. While this
effort has resulted in many algorithmic and mathematical tools, it has also
resulted in a vast and somewhat impenetrable literature. This literature
has conflicting terms, symbols, and often advocates approaches that are
simply not practical. As a result, it is very difficult for new people to “get
up to speed” and begin developing software to generate realistic images.
The most technical part of realistic image generation is dealing with “global
illumination.” The word “global” refers to the fact that the appearance
of an object depends on the light it receives from all other objects. So in
this sense, computing lighting even at a single point requires computation
using the entire model of the scene. While this might seem like overkill,
the visual richness of an image created using a global illumination program
is simply not possible with simpler local illumination programs.

This book breaks down the barrier to entry and describes global illumi-
nation concepts and algorithms from a modern viewpoint using consistent
terms and symbols. While there are good books on specific global illumina-
tion topics, this is the first book to address global illumination techniques
as a whole. The authors are ideal for such an ambitious project; they have
a broad background in rendering and have done significant research in all
of the major global illumination topics.

Most of the major theoretical advances in global illumination took place
in the 1980s. These included the development of both radiosity and Monte
Carlo ray tracing. In the 1990s, it became apparent that none of these
algorithms were practical when applied in a straightforward manner. In
that time, a more quiet revolution took place as techniques were developed
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viii Foreword

to make global illumination practical for real-world models. The authors
were key players in that revolution, and this book stresses techniques that
have been shown to work in the field. The approach of the book has been
fine-tuned in a course on global illumination taught by the authors at the
annual SIGGRAPH conference, and this has resulted in a clean progression
of ideas.

Since Advanced Global Illumination was published, it has become my
default reference for points related to advanced rendering. I also recom-
mend it to new students at my university who need to absorb twenty years
of rendering research without wading through hundreds of dense papers
that often have conflicting terminology or, worse, advance concepts that
have since been discredited. Rendering images with realistic illumination
effects is very rewarding, and it is not hard once the basic concepts are
clearly understood. This book describes all of those concepts, and it is a
passport to making beautiful and realistic images. Enjoy!

Peter Shirley
May 2006
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Preface

This book is the result of our experience while teaching a course of the same
name at the annual ACM SIGGRAPH conference during 2001 and 2002,
as well as teaching various graduate-level courses and seminars covering
advanced photorealistic rendering topics. When setting up these courses,
we always felt that covering the fundamentals gives a much broader insight
into how to design a global illumination algorithm, instead of presenting the
student with a number of recipes and ready-to-compile code. By explaining
the basic building blocks and underlying theory, the reader should be more
able to design and implement his own photorealistic rendering algorithms.

We chose Advanced Global Illumination as the title because we present
topics which are of a more fundamental nature than those which are usually
understood by the term global illumination or photorealistic rendering by
the computer graphics enthusiast. Too often, classic ray tracing with some
extensions for handling area light sources, or with some heuristics added
for indirect illumination, are categorized as global illumination algorithms.
In order to know why such approaches fail to cover all possible illumina-
tion effects, and exactly why this is the case, it is necessary to understand
the fundamental and advanced concepts of the most advanced global illu-
mination algorithms available. The adjective “advanced” is to be read in
this way. The professional researcher or Ph.D. student who spends several
years of research studying global illumination algorithms may not judge
the topics in this book to be “advanced” in this sense, but we think that
the majority of computer graphics practitioners will discover many topics
here not covered by other books.

However, this does not imply that this book only covers theoretical
concepts. Various sections deal with practical issues on how to implement
the different building blocks needed to build your own global illumination

xiii
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xiv Preface

algorithm. We hope that the researcher, the graduate and undergraduate
student, and the computer graphics enthusiast will find this book interest-
ing to read.

We would like to thank the people from A K Peters, who have been
more than helpful during the process of publishing this book, and who have
been very patient and encouraging. Especially, we would like to thank Alice
Peters, Heather Holcombe, and Jonathan Peters for their understanding in
us taking more time to finish this manuscript than originally intended.

We would also like to thank the various research groups and institu-
tions, at which we found the time to work on this book and who gave
us the opportunity to teach computer graphics and photorealistic render-
ing: The Program of Computer Graphics at Cornell University, USA; the
Max Planck Institut für Informatik in Saarbrücken, Germany; the Depart-
ment of Computer Science at the University of Leuven, Belgium; and the
Expertise Centre for Digital Media at the University of Limburg, also in
Belgium.

The students in our various computer graphics courses over the past
years provided us with valuable additional insight on how to adequately
explain various topics related to photorealistic rendering. Student feedback
in an educational setting is very worthwhile, and we wish to thank them
all. We also wish to thank the attendees of our global illumination courses
at the ACM SIGGRAPH conferences for the criticism and encouragement
they provided.

Last but not least, we would like to thank our families and close friends,
who supported us throughout the huge task of writing this book.

Philip Dutré
Philippe Bekaert

Kavita Bala

Leuven, Hasselt, and Ithaca, January 2003
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Preface to the Second Edition

Since the first edition of this book was published almost three years ago,
we have received quite some feedback. We were very happy to hear that
Advanced Global Illumination has been used as a textbook in various uni-
versities and are grateful for the constructive comments from our readers.

During the last years, the field of global illumination has expanded, and
as a result, some new sections have been added. Chapter 5 contains a small
section about environment maps. Moreover, we extended Chapters 7 and
8 to include some of the newest developments in scalable rendering and
precomputed radiance transfer.

The most significant change probably is the inclusion of exercises at
the end of each chapter. We often received requests about homeworks for
courses using this book, and so we included a selection of homeworks we
have used ourselves during the past years.

Specifically for this second edition of the book, we would like to thank
all readers who have provided us with valuable feedback and criticism.
Partly due to their comments, various sections in this book have been
amended and improved. We especially thank the following persons: Tomas
Akenine-Möller, Andreas Baerentzen, Dave Beveridge, Bryan Cool, Jeppe
Revall Frisvad, Michael Goesele, Vlastimil Havran, Magnus Jonneryd,
Jaroslav Křivánek, Nelson Max, Rick Speer, Derek Young, Koen Yskout.
Our apologies to anyone who has contributed but is not mentioned in this
list. We would like to thank Bruce Walter for providing us with the images
for the book cover.

We would like to thank all the staff at A K Peters, and in particular
Alice Peters, who has provided us with the opportunity to publish a second
edition of this book. Also, we especially thank our editor Kevin Jackson-
Mead, who has assisted us greatly in preparing the final manuscript and
managed us skillfully throughout the whole process.
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book would not have been possible.

Philip Dutré
Kavita Bala

Philippe Bekaert
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Introduction

1.1 What Is Realistic Image Synthesis?

Realistic image synthesis is a domain in the field of computer graphics
that generates new images from other data. Typically, one starts from a
complete description of a three-dimensional scene, specifying the size and
location of objects, the material properties of all surfaces of solid objects
in the scene, and the position and emission characteristics of light sources.
From this data, a new picture is generated, as seen from a virtual camera
placed in the scene. The aim is to make these pictures as photorealistic
as possible, such that the difference with a real photograph (if the virtual
scene would be constructed in reality) is not noticeable. This requires the
underlying physical processes regarding materials and the behavior of light
to be precisely modeled and simulated. Only by knowing exactly what one
is trying to simulate does it become possible to know where simplifications
can be introduced in the simulation and how this will affect the resulting
pictures.

Generating photorealistic pictures is a very ambitious goal, and it has
been one of the major driving forces in computer graphics over the last
decades. Visual realism has always been a strong motivation for research
in this field, and it is a selling point for many graphics-related, commercially
available products. It is expected that this trend will continue in the coming
years and that photorealism will remain one of the core fields in rendering.

Photorealistic rendering is not the only rendering paradigm that is used
in computer graphics, nor is it the best solution for all rendering applica-
tions. Especially in the last couple of years, non-photorealistic rendering
has become a field in itself, providing viable alternatives for the photo-
realistic rendering style. Non-photorealistic rendering (or NPR, as it is
commonly called) uses a wide variety of drawing styles that are suited for
a more artistic, technical, or educational approach. Drawing styles covered
by NPR include pen-and-ink drawings, cartoon-style drawings, technical
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2 1. Introduction

illustrations, watercolor painting, and various artistic styles such as im-
pressionism, pointillism, etc. The possibilities are virtually limitless, and
the algorithms are driven by trying to recreate a certain style rather than
by trying to simulate a physical process found in nature. While there is
clearly room for NPR, a variety of applications are interested in the physical
simulation of reality.

1.1.1 The Importance of Realistic Image Synthesis

Photorealistic rendering is a rendering style that has many applications in
various fields. Early applications were limited by the amount of time it
took to compute a single image (usually measured in hours), but recently,
interactive techniques have broadened the scope of photorealistic image
synthesis considerably.

Film and Visual Effects

Visual effects in the film industry have always been a driving force for the
development of new computer graphics techniques. Depending on the ren-
dering style used, feature animations can benefit from global illumination
rendering, although this might be limited to a few scenes where more com-
plex lighting configurations are used. Movies with live footage can benefit
too, especially when virtual elements are added. In this case, a consistent
lighting between the real and virtual elements in the same shot needs to
be achieved, in order to avoid implausible lighting effects. Global illumina-
tion is necessary to compute the light interaction between those different
elements.

Architecture

Architectural design is often quoted as one of the most beneficial appli-
cations of photorealistic rendering. It is possible to make visualizations,
whether they be still images or interactive walk-throughs, of buildings yet
to be constructed. Not only can indoor illumination due to interior light-
ing be simulated, but outdoor lighting can be considered as well, e.g., the
building can be illuminated using various atmospheric conditions at differ-
ent times of the year, or even various times during the day.

Ergonomic Design of Buildings and Offices

Although not strictly a computer graphics application, the ergonomic de-
sign of office rooms or factory halls is very much related to global illu-
mination. Given the design of a building, it is possible to compute the
various illumination levels in different parts of the building (e.g., desks,
workstations, etc.), and the necessary adjustments can be made to reach
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1.1. What Is Realistic Image Synthesis? 3

the minimum legal or comfortable requirements by changing the color of
paint on the walls, the repositioning of windows, or even the replacement
of walls.

Computer Games

Most computer games revolve around fast and interactive action, coupled
with a suspension of disbelief in a virtual world. As such, photorealistic
rendered imagery probably is a strong cue to draw players into the envi-
ronments in which their virtual characters are acting. Since interactivity
is more important in a gaming context than realistic images, the use of
global illumination in games is still somewhat limited but will undoubtedly
become more important in the near future.

Lighting Engineering

The design of lights and light fixtures can also benefit from global illumina-
tion algorithms. Specific designs can be simulated in virtual environments,
such that the effect of the emission patterns of light bulbs can be studied.
This requires an accurate measurement and modeling of the characteristics
of the emission of the light sources, which is a whole field of study by itself.

Predictive Simulations

Predictive simulations encompass much more than just simulating the look
of buildings as described above. Other areas of design are important as
well: car design, appliances, consumer electronics, furniture, etc. This all
involves designing an object and then simulating how it will look in a real
or virtual environment.

Flight and Car Simulators

Simulators used for training, such as flight and car simulators, benefit from
having an as accurate as possible visual simulation, e.g., aspects of street
lighting are important in car simulators, accurate atmospheric visual sim-
ulation is important when designing a flight simulator, etc. Other types
of training simulators also use or might use realistic imagery in the future;
armed combat, ship navigation, and sports are a few examples.

Advertising

Producing accurate imagery of yet-to-be-produced products is probably a
good tool for the advertising world. Not only does the customer have the
ability to see what the product looks like when generated using photorealis-
tic rendering, but he would benefit if he could place the product in a known
environment, e.g., furniture could be placed, with consistent illumination,
in a picture of your own living room.
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4 1. Introduction

1.1.2 History of Photorealistic Rendering

This section provides a brief history of photorealistic rendering algorithms
and the quest for visual realism. Some more extensive background and
history on specific algorithms can also be found in the relevant chapters.

Photorealism in the Precomputer Age

The history of photorealistic rendering, or the quest for visual realism,
can be traced throughout the history of art. Although we are mainly
interested here in the computer-driven photorealistic rendering programs,
it might be useful to look at how the understanding of realistic rendering
evolved in the course of history. Medieval and premedieval art is very
much iconic in nature: persons and objects are displayed in simplified,
often two-dimensional forms, and sizes and shapes are used to reflect the
importance of the person displayed, relative positioning in a scene, or other
properties.

The real beginning of realistic rendering probably starts with the first
use and study of perspective drawings. Especially in Italy during the Re-
naissance period, various artists were involved in discovering the laws of
perspective. Brunelleschi (1377–1446), da Vinci (1452–1519), and Dürer
(1471–1528) (to name a few) are well known for their contributions. Later,
painters also started to pay attention to the shading aspects. By carefully
studying shadows and light reflections, very accurate renderings of real
scenes could be produced using classic artistic materials.

Much of the knowledge of photorealistic painting was collected by British
landscape artist Joseph Turner (1775–1851), appointed Professor of Per-
spective at the Royal Academy of Arts in London. He designed a course
of six lectures, covering principles such as accurate drawing of light, reflec-
tions, and refractions. Some of his sketches show reflections in mirrored
and transparent spheres, a true precursor of ray tracing almost 300 years
later. In his book, Secret Knowledge, British artist David Hockney [73]
develops an interesting thesis: Starting in the 15th century, artists began
using optical tools to display reality very accurately. Mostly using a camera
lucida, they projected imagery onto the canvas and traced the silhouettes
and outlines very carefully. Afterwards, several such drawings were com-
posed in a bigger painting, which explains the different perspectives found
in various well-known paintings of the era.

It is certainly no coincidence that the trend and developments towards
more photorealism in art were somewhat halted with the invention of pho-
tography at the beginning of the 19th century (Nicéphore Niépce, 1765–
1833). Capturing an image accurately is suddenly not a difficult process
anymore. After the invention of photography, art evolved into modern art,
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1.1. What Is Realistic Image Synthesis? 5

with its various novel ways, not necessarily photorealism, of looking at
reality (pointillism, impressionism, cubism, etc.).

Primitive Shading Algorithms

The birth of computer graphics is usually accredited to SketchPad [188], the
Ph.D. thesis of Ivan Sutherland at the Massachusetts Institute of Technol-
ogy (M.I.T.) in 1963. Early computer graphics were mostly line drawings,
but with the advent of raster graphics, shading algorithms became widely
available. Primitive shading algorithms usually attributed a single color
to a single polygon, the color being determined by the incident angle of
light on the surface. This type of shading gives some cues about shape and
orientation but is far away from realistically illuminated objects.

A breakthrough was achieved by Henri Gouraud and Bui Tui Phong,
who realized that by interpolation schemes, additional realism in shading
can be easily achieved. Gouraud shading [58] computes illumination values
at vertices and interpolates these values over the area of a polygon. Phong
shading [147] interpolates the normal vectors over the area of a polygon and
computes illumination values afterwards, thus better preserving highlights
caused by nondiffuse reflection functions. Both techniques are longstanding
shading algorithms in computer graphics and are still widely used.

Another major breakthrough for more realism in computer-generated
imagery was the use of texture mapping. Using a local two-dimensional
coordinate system on an object, it is possible to index a texture map and
attribute a color to the local coordinate. Integration in the rendering pro-
cess involves a two-dimensional coordinate transform from the local coor-
dinate system on the object to the local coordinate system of the texture
map. Once texture mapping was able to change the color of points on a
surface, it was fairly straightforward to change other attributes as well.
Thus, the techniques of bumpmapping, displacement mapping, environ-
ment mapping, etc., were added. Texturing remains one of the building
blocks for rendering in general.

Additional research was also performed in the area of light-source mod-
eling. Originally only point light sources or directional light sources were
used in the earliest rendering algorithms, but fairly soon spotlights, direc-
tional lights, and other types of light sources, sometimes emulating those
found in lighting design, were introduced. Together with the modeling of
light sources, the accurate portrayal of shadows has received much atten-
tion. When using point light sources, the computation of shadows can
be reduced to a simple visibility problem from a single point of view, but
the shadows are sharp and hard. The use of shadow volumes and shadow
maps are among the best-known algorithms and still receive attention for
improvement.
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6 1. Introduction

Ray Tracing

In 1980, ray tracing, probably the most popular algorithm in rendering,
was introduced by Turner Whitted [194]. Although the principle of tracing
rays was used before to generate correct perspective and shadows in the
conventional arts, the tracing of rays in computer graphics was a major
idea for generating all sorts of photorealistic effects. The original paper
used rays for determining visibility through a single pixel (also known as
ray casting) but also used rays to compute direct illumination and perfect
specular and refractive illumination effects. As such, this seminal paper
described a major new tool in generating images.

The ray-tracing algorithm has been researched and implemented exten-
sively during the last two decades. Initially, much attention was on effi-
ciency, using well-known techniques such as spatial subdivision and bound-
ing volumes. More and more, the focus was also on lighting effects them-
selves. By treating ray tracing as a tool for computing integrals, effects
such as diffuse reflections and refractions, motion blur, lens effects, etc.
could be computed within a single framework. For a nice overview, the
reader is referred to [52].

The original paper did not solve the entire global illumination problem
but was very influential for later developments. To make a distinction
with more modern ray-tracing algorithms, the first algorithm is sometimes
referred to as Whitted-style ray tracing or classic ray tracing. Many present-
day global illumination algorithms at the core are ray tracers, in the sense
that the basic tool still is a procedure that traces a ray through a three-
dimensional scene.

Since a basic ray tracer is rather easy to implement, it is a very pop-
ular algorithm to serve as the first step into photorealistic rendering. It
is traditional to have undergraduate students implement a ray tracer in
many graphics courses. Many computer graphics enthusiasts post their ray
tracers on the internet, and many of the more popular rendering packages
have ray-tracing roots.

Radiosity

With ray tracing being well underway in the first half of the eighties as
the algorithm of choice for realistic rendering, it became clear that ray
tracing also had severe limitations. Indirect illumination effects such as
color bleeding and diffuse reflections were very difficult to simulate. It
was clear that a solution needed to be found if one wanted to produce
photorealistic pictures. The answer came in the form of a finite-element
method called radiosity, named after the radiometric quantity that was
computed. The algorithm was developed originally at Cornell University
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1.1. What Is Realistic Image Synthesis? 7

[56] but, as was the case with ray tracing, spawned many research papers
and received lots of attention.

One of the early advantages of radiosity was that it was a scene-based
method, as opposed to ray tracing, which is an image-based method. In
radiosity, the distribution of light is computed by subdividing the scene into
surface elements and computing for each element the correct radiometric
value. Once the radiosity value for each surface element was known, the
solution could be displayed with existing graphics hardware, using Gouraud
shading for smoothing out the radiosity values computed at each vertex
or polygon. This made radiosity an algorithm of choice for interactive
applications such as scene walk-throughs.

Early radiosity research was centered around computing a faster solu-
tion for the linear system of equations that expressed the equilibrium of
the light distribution in the scene. Several relaxation techniques were in-
troduced and more or less subdivided the radiosity solvers into “gathering”
and “shooting” algorithms.

Early on, radiosity was limited to diffuse surfaces, and the accuracy of
the method was set by the choice of surface elements. Finer details in the
shading at a frequency higher than the initial mesh could not be displayed.
Hierarchical radiosity proved to be a major step forwards, since the algo-
rithm was now able to adapt its underlying solution mesh to the actual
shading values found on those surfaces. Discontinuity meshing was simi-
larly used to precompute accurate meshes that followed the discontinuity
lines between umbra and penumbra regions caused by area light sources.
The algorithm was also extended by subdividing the hemisphere around
surfaces in a mesh as well, such that glossy surfaces could also be handled.
On the other side of hierarchical radiosity, clustering algorithms were intro-
duced to compute the illumination for disjunct objects in single clusters.
Overall, radiosity has received wide attention comparable to ray tracing
but, due to the somewhat more complex underlying mathematics, has not
been as popular.

The Rendering Equation

One of the most important concepts for global illumination algorithms, the
rendering equation, was introduced by Kajiya in 1986 [85], although in a
different form than is used today. In this seminal paper, for the first time,
the complete transport equation describing the distribution of light in a
scene was described in a computer graphics context. The importance of
the rendering equation is that all light transport mechanisms are described
using a recursive integral equation, whose kernel contains the various ma-
terial properties and the visibility function.
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Formulating the global illumination problem as the rendering equation
allows for a unified approach when computing images. It now became
possible to apply any sort of integration mechanism to numerically evaluate
the rendering equation. Also, because the recursive nature of the rendering
equation required recursive algorithms, and thus stopping conditions, it was
more obvious which successive light reflections were ignored, approximated
only up to a certain depth, etc. Also, ray-tracing and radiosity algorithms
could now be considered as different integration procedures trying to solve
the rendering equation. Ray tracing basically could be written down as a
succession of recursive quadrature rules, and radiosity algorithms expressed
a finite element solution to the same equation.

One of the most influential consequences of the rendering equation was
the development of stochastic ray tracing or Monte Carlo ray tracing.
Monte Carlo integration schemes use random numbers to evaluate inte-
grals, but they have the nice property that the expected value of the result
equals the exact value of the integral. Thus, it became possible, in theory,
to compute correct photorealistic images, assuming the algorithm ran long
enough.

Multipass Methods

At the end of the eighties, there were two big families of global illumina-
tion algorithms: those that used a ray-tracing approach, computing a single
color for every pixel on the screen, and those that were based on the radios-
ity approach, computing a scene-based solution, only generating an image
as a post-process. The first class of algorithms is good for mostly specular
and refractive indirect illumination, while the second class is better suited
for computing diffuse interreflections and allows interactive manipulation.

It was therefore inevitable that a “best-of-both-worlds” approach would
be developed, using ray tracing and radiosity characteristics in the same
algorithm. These algorithms usually consist of multiple passes, hence the
name multipass methods. Many different variants have been published (e.g.,
[24], [209], [171]). A multipass method usually consists of a radiosity pass
computing the indirect diffuse illumination, followed by a ray-tracing pass
computing the specular light transport, while picking up radiosity values
from the first pass. Care has to be taken that some light transport modes
are not computed twice, otherwise the image would be too bright in some
areas. More than two passes are possible, each pass dedicated to computing
a specific aspect of the total light transport.

Algorithms that store partial solutions of the light distribution in the
scene, such as the RADIANCE algorithm [219] or photon mapping, can be
considered multipass algorithms as well. The photon mapping algorithm
has especially received a lot of attention in research literature and is widely
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1.1. What Is Realistic Image Synthesis? 9

considered to be an efficient and accurate algorithm to solve the global
illumination problem.

Current Developments

Currently, lots of attention is given to interactive applications using global
illumination algorithms. These usually involve a clever combination of
storage and reuse of partial solutions, multipass algorithms, etc.

Also, more and more use is made of photographs of real objects or
scenes, which are integrated into virtual environments. The problem is
that one wants to keep a consistent illumination, and image-based lighting
techniques have proposed some elegant solutions.

As far as the authors can see, global illumination and photorealistic
rendering will likely remain a major influence in computer graphics devel-
opments of the future.

1.1.3 A Framework for Global Illumination Algorithms

When looking at the development of global illumination algorithms over the
past 20 years, one sees a collection of widely different approaches, as well as
variants of the same approach. Especially for the light transport simulation,
one can make a distinction between different paradigms: pixel-oriented
versus scene-oriented, diffuse versus specular surfaces, deterministic versus
Monte Carlo integration, shooting versus gathering, etc. These differences
are important because they affect the accuracy of the final image, but a
wider framework for a complete global illumination pipeline also involves
other aspects such as data acquisition and image display.

A framework for realistic image synthesis that combines these different
aspects was described in a paper by the same name by Greenberg et al.
[59]. The framework presented in this paper encompasses different aspects
of a full photorealistic rendering system and provides a general overview of
how photorealistic rendering algorithms have evolved over time.

A photorealistic rendering system can be thought of as consisting of
three main stages: measurement and acquisition of scene data, the light
transport simulation, and the visual display.

Measurement and Acquisition

This part of the framework includes measuring and modeling the BRDF of
materials to be used in the virtual scene, as well as emission characteristics
of light sources. By comparing the goniometric data, one is able to verify
the accuracy of the models and measurements.
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Light Transport

The light transport phase takes the data describing the geometry of the
scene, materials, and light sources and computes the distribution of light
in the scene. This is the main bulk of what is usually called a global
illumination algorithm. The result is radiometric values in the image plane,
which can be verified by, for example, comparing real photographs with
computed pictures.

Visual Display

The matrix of radiometric values needs to be displayed on a screen or
printer. A tone-mapping operator is necessary to transform the raw ra-
diometric data into pixel colors. This transformation uses a model of the
human visual system, such that the same visual sensation is caused by
looking at the displayed picture as by looking at the real scene.

If it is known what error can be tolerated in last stage, this error can
be translated into tolerances for the light transport phase, and eventually
to the measurement phase. The critical notion of this framework is that
perceptual accuracy on the part of the human observer, not radiometric
accuracy, should be the driving force when designing algorithms.

1.2 Structure of this Book

As mentioned before, the content of this book is geared towards under-
standing the fundamental principles of global illumination algorithms. The
division of the content into several chapters reflects this. We strongly be-
lieve that only by treating the fundamental and basic building blocks in
a thorough way can a full understanding of photorealistic rendering be
achieved.

The chapters are organized as follows:

• Chapter 1 provides a general introduction to global illumination, out-
lines the importance of global illumination in the field of computer
graphics, and provides a short history of global illumination algo-
rithms.

• Radiometry and the rendering equation are covered in Chapter 2.
A good understanding of radiometry is necessary for understanding
global illumination algorithms. We only cover those aspects that we
need to design global illumination software. The characteristics and
nature of the bidirectional reflectance distribution function (BRDF)
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1.2. Structure of this Book 11

are covered in detail, as well as how the definition of the BRDF gives
rise to the rendering equation.

• Chapter 3 explains the principle of Monte Carlo integration, a ver-
satile technique that is used in almost all recent global illumination
algorithms. The key concepts are explained, but again, only to the
level that we need to understand and adequately explain the chapters
that follow.

• Chapter 4 puts the rendering equation in a somewhat broader context
and gives some general insights into several strategies on how a global
illumination algorithm can be designed.

• Chapter 5 gives all the details about stochastic ray tracing. Starting
from the rendering equation and using Monte Carlo integration as
a tool, several algorithms are deduced for computing various light-
ing effects. Special attention is given to the computation of direct
illumination.

• Stochastic radiosity is covered in Chapter 6 and complements the
previous chapter. It offers a very profound overview on the various
Monte Carlo radiosity approaches that matured only recently.

• Chapter 7 provides an overview of hybrid methods, which builds on
the principles of stochastic ray tracing and radiosity. Various algo-
rithms are explained in detail, with references for further study.

• Chapter 8 covers a number of topics that receive attention in cur-
rent research, including participating media, subsurface scattering,
tone mapping, human visual perception, and strategies for comput-
ing global illumination very rapidly.

• Appendix A describes an API for global illumination, a set of object
classes that encapsulates and hides the technical details of material
and geometry representation and ray casting. This API allows concise
and efficient implementations of the algorithms discussed in this book.
An example implementation of a light tracer, a path tracer, and a
bidirectional path tracer are given.

• Appendix B gives a review of solid angles and hemispherical geometry.

• Appendix C contains technical details omitted from Chapter 6.
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12 1. Introduction

1.3 How to Use this Book

This book is the result of teaching various classes about advanced rendering
algorithms, and we think that if this book is used as a textbook, it should
be a course at the graduate level.

Students that wish to take a class that uses this book should have
taken at least one other computer graphics course. One course might be a
general introduction to computer graphics, while another course might be
project-oriented and focus on some aspects of animation, ray tracing, or
modeling. Also, familiarity with probability theory and calculus is required,
since otherwise the concepts of the rendering equation and Monte Carlo
integration will be hard to explain. Some knowledge about physics might
help, although we usually found it was not strictly necessary.

We have added exercises to each chapter in this edition. These exercises
are based on assignments we have used ourselves when teaching this course
at the graduate level and so have gone through some scrutiny as to whether
they have the appropriate difficulty level.

In all of our assignments for our own courses, we provided the students
with a basic ray-tracing framework. This skeleton ray tracer is kept very
simple, such that the focus can be put entirely on implementing physically
correct algorithms. Having the students themselves implement a (basic) ray
tracer from scratch is, in our opinion, not a good assignment, since students
will be mostly bothered by the nuts and bolts of ray-object intersections,
parsing an input file, image viewing, etc.

In case the instructor wants to put together his or her own assignments,
here are some suggestions based on our experience:

• Homework 1 might include some problems on radiometry to make
students familiar with the concepts of radiometry and make them
think about the definition of radiance. A typical exercise could be to
compute the radiance reaching earth from the sun, or the radiosity
value incident on a square surface under various conditions.

• Homework 2 could be a programming exercise in which students are
provided with a basic ray-tracing program. The students would then
have to add a specific BRDF model and render a few pictures.

• Homework 3 would extend on the ray tracer from Homework 2. Stu-
dents could be allowed to add specific lighting effects, such as various
ways of computing direct illumination. Also, they could be asked to
experiment with different sampling techniques and see what the effect
is on the resulting images.
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• A number of problems about which global illumination algorithm to
use in specific situations could be the subject of Homework 4. For
example, scenes could be given with a high number of light sources, a
significant amount of specular materials, some unusual geometric con-
figuration, etc. This could be a written exercise, in which the student
does not necessarily have to implement his or her ideas, but merely
sketch them on paper. Thus, students can design any algorithm they
wish without the burden of actually implementing it.

• Studying and presenting a recent research paper would be a good
topic for Homework 5 and would also be a good conclusion of the
entire course.

Additionally, various problems discussed in the different chapters can
be used as homework assignments or can serve as a problem to start a class
discussion.
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2

The Physics of Light Transport

The goal of rendering algorithms is to create images that accurately repre-
sent the appearance of objects in scenes. For every pixel in an image, these
algorithms must find the objects that are visible at that pixel and then
display their “appearance” to the user. What does the term “appearance”
mean? What quantity of light energy must be measured to capture “ap-
pearance”? How is this energy computed? These are the questions that
this chapter will address.

In this chapter, we present key concepts and definitions required to
formulate the problem that global illumination algorithms must solve. In
Section 2.1, we present a brief history of optics to motivate the basic as-
sumptions that rendering algorithms make about the behavior of light (Sec-
tion 2.2). In Section 2.3, we define radiometric terms and their relations
to each other. Section 2.4 describes the sources of lights in scenes; in Sec-
tion 2.5, we present the bidirectional distribution function, which captures
the interaction of light with surfaces. Using these definitions, we present
the rendering equation in Section 2.6, a mathematical formulation of the
equilibrium distribution of light energy in a scene. We also formulate the
notion of importance in Section 2.7. Finally, in Section 2.8, we present
the measurement equation, which is the equation that global illumination
algorithms must solve to compute images. In the rest of this book, we will
discuss how global illumination algorithms solve the measurement equation.

2.1 Brief History

The history of the science of optics spans about three thousand years of
human history. We briefly summarize relevant events based mostly on the
history included by Hecht and Zajac in their book Optics [68]. The Greek
philosophers (around 350 B.C.), including Pythagoras, Democritus, Empe-
docles, Plato, and Aristotle among others, evolved theories of the nature

15
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16 2. The Physics of Light Transport

of light. In fact, Aristotle’s theories were quite similar to the ether theory
of the nineteenth century. However, the Greeks incorrectly believed that
vision involved emanations from the eye to the object perceived. By 300
B.C. the rectilinear propagation of light was known, and Euclid described
the law of reflection. Cleomedes (50 A.D.) and Ptolemy (130 A.D.) did
early work on studying the phenomenon of refraction.

The field of optics stayed mostly dormant during the Dark Ages with
the exception of the contribution of Ibn-al-Haitham (also known as Al-
hazen); Al-hazen refined the law of reflection specifying that the angles of
incidence and reflection lie in the same plane, normal to the interface. In
fact, except for the contributions of Robert Grosseteste (1175–1253) and
Roger Bacon (1215–1294) the field of optics did not see major activity until
the seventeenth century.

Optics became an exciting area of research again with the invention
of telescopes and microscopes early in the seventeenth century. In 1611,
Johannes Kepler discovered total internal reflection and described the small
angle approximation to the law of refraction. In 1621, Willebrord Snell
made a major discovery: the law of refraction; the formulation of this law
in terms of sines was later published by René Descartes. In 1657, Pierre
de Fermat rederived the law of refraction from his own principle of least
time, which states that a ray of light follows the path that takes it to its
destination in the shortest time.

Diffraction, the phenomenon where light “bends” around obstructing
objects, was observed by Grimaldi (1618–1683) and Hooke (1635–1703).
Hooke first proposed the wave theory of light to explain this behavior.
Christian Huygens (1629–1695) considerably extended on the wave theory
of light. He was able to derive the laws of reflection and refraction using
this theory; he also discovered the phenomenon of polarization during his
experiments.

Contemporaneously, Isaac Newton (1642–1727) observed dispersion,
where white light splits into its component colors when it passes through a
prism. He concluded that sunlight is composed of light of different colors,
which are refracted by glass to different extents. Newton, over the course
of his research, increasingly embraced the emission (corpuscular) theory of
light over the wave theory.

Thus, in the beginning of the nineteenth century, there were two con-
flicting theories of the behavior of light: the particle (emission/corpuscular)
theory and the wave theory. In 1801, Thomas Young described his principle
of interference based on his famous double-slit experiment, thus providing
experimental support for the wave theory of light. However, due to the
weight of Newton’s influence, his theory was not well-received. Indepen-
dently, in 1816, Augustin Jean Fresnel presented a rigorous treatment of
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Monte Carlo Methods
This chapter introduces the concept of Monte Carlo integration and reviews
some basic concepts in probability theory. We also present techniques to
create better distributions of samples. More details on Monte Carlo meth-
ods can be found in Kalos and Whitlock [86], Hammersley and Hand-
scomb [62], and Spanier and Gelbard [183]. References on quasi–Monte
Carlo methods include Niederreiter [132].

3.1 Brief History

The term “Monte Carlo” was coined in the 1940s, at the advent of elec-
tronic computing, to describe mathematical techniques that use statistical
sampling to simulate phenomena or evaluate values of functions. These
techniques were originally devised to simulate neutron transport by scien-
tists such as Stanislaw Ulam, John von Neumann, and Nicholas Metropolis,
among others, who were working on the development of nuclear weapons.
However, early examples of computations that can be defined as Monte
Carlo exist, though without the use of computers to draw samples. One
of the earliest documented examples of a Monte Carlo computation was
done by Comte de Buffon in 1677. He conducted an experiment in which a
needle of length L was thrown at random on a horizontal plane with lines
drawn at a distance d apart (d > L). He repeated the experiment many
times to estimate the probability P that the needle would intersect one of
these lines. He also analytically evaluated P as

P =
2L
πd
.

Laplace later suggested that this technique of repeated experimentation
could be used to compute an estimated value of π. Kalos and Whitlock [86]
present early examples of Monte Carlo methods.

47
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3.2 Why Are Monte Carlo Techniques Useful?

Consider a problem that must be solved, for example, computing the value
of the integration of a function with respect to an appropriately defined
measure over a domain. The Monte Carlo approach to solving this problem
would be to define a random variable such that the expected value of that
random variable would be the solution to the problem. Samples of this
random variable are then drawn and averaged to compute an estimate of
the expected value of the random variable. This estimated expected value
is an approximation to the solution of the problem we originally wanted to
solve.

One major strength of the Monte Carlo approach lies in its conceptual
simplicity; once an appropriate random variable is found, the computa-
tion consists of sampling the random variable and averaging the estimates
obtained from the sample. Another advantage of Monte Carlo techniques
is that they can be applied to a wide range of problems. It is intuitive
that Monte Carlo techniques would apply to problems that are stochastic
in nature, for example, transport problems in nuclear physics. However,
Monte Carlo techniques are applicable to an even wider range of problems,
for example, problems that require the higher-dimensional integration of
complicated functions. In fact, for these problems, Monte Carlo techniques
are often the only feasible solution.

One disadvantage of Monte Carlo techniques is their relatively slow
convergence rate of 1√

N
, where N is the number of samples (see Sec-

tion 3.4). As a consequence, several variance reduction techniques have
been developed in the field, discussed in this chapter. However, it should
be noted that despite all these optimizations, Monte Carlo techniques still
converge quite slowly and, therefore, are not used unless there are no vi-
able alternatives. For example, even though Monte Carlo techniques are
often illustrated using one-dimensional examples, they are not typically
the most efficient solution technique for problems of this kind. But there
are problems for which Monte Carlo methods are the only feasible solu-
tion technique: higher-dimensional integrals and integrals with nonsmooth
integrands, among others.

3.3 Review of Probability Theory

In this section, we briefly review important concepts from probability the-
ory. A Monte Carlo process is a sequence of random events. Often, a
numerical outcome can be associated with each possible event. For exam-
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Strategies for Computing
Light Transport

4.1 Formulation of the Rendering Equation

The global illumination problem is basically a transport problem. Energy
emitted by light sources is transported by means of reflections and refrac-
tions in a three-dimensional environment. We are interested in the energy
equilibrium of the illumination in the environment. Since the human eye is
sensitive to radiance values, and since we want to compute photorealistic
images, we are primarily interested in radiance values or average radiance
values computed over certain areas and solid angles in the scene. The lat-
ter means that we should compute flux values for several areas of interest,
which will be referred to as sets. The exact geometric shape of these sets can
vary substantially, depending on the requested level of accuracy. As will be
explained in subsequent chapters, ray tracing algorithms define sets as sur-
face points visible through a pixel, with regard to the aperture of the eye.
Radiosity algorithms often define sets as surface patches with the reflecting
hemisphere as the directional component (Figure 4.1). Other algorithms
might follow different approaches, but the common factor is always that for
a number of finite surface elements and solid angle combinations, average
radiance values need to be computed.

As explained in Chapter 2, the fundamental transport equation used to
describe the global illumination problem is called the rendering equation
and was first introduced into the field of computer graphics by Kajiya
[85]. The rendering equation describes the transport of radiance through a
three-dimensional environment. It is the integral equation formulation of
the definition of the BRDF and adds the self-emittance of surface points at
light sources as an initialization function. The self-emitted energy of light
sources is necessary to provide the environment with some starting energy.
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Figure 4.1. Sets of surface points and directions for ray tracing and radiosity
algorithms.

The radiance leaving some point x, in direction Θ, is written as:

L(x→ Θ) = Le(x→ Θ) +
∫

Ωx

fr(x,Ψ↔ Θ)L(x← Ψ) cos(Nx,Ψ)dωΨ.

(4.1)
The rendering equation tells us that the exitant radiance emitted by a

point x in a direction Θ equals the self-emitted exitant radiance at that
point and in that direction, plus any incident radiance from the illuminating
hemisphere that is reflected at x in direction Θ. This is illustrated in
Figure 4.2.

Emission can result from various physical processes, e.g., heat or chem-
ical reactions. The emission can also be time-dependent for a single surface
point and direction, as is the case with phosphorescence. In the context of
global illumination algorithms, one usually is not interested in the nature
of the source of the self-emitted radiance of surfaces. Self-emitted radiance
is merely considered as a function of position and direction.

As was shown in Chapter 2, it is possible to transform the rendering
equation from an integral over the hemisphere to an integral over all sur-
faces in the scene. Both the hemispherical and area formulation contain
exitant and incident radiance functions. We know that radiance remains
unchanged along straight paths, so we can easily transform exitant radi-
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Stochastic Path-Tracing
Algorithms

This chapter discusses a class of algorithms for computing global illumina-
tion pictures known as path-tracing algorithms1. The common aspect of
these algorithms is that they generate light transport paths between light
sources and the points in the scene for which we want to compute radiance
values. Another, although less vital, characteristic is that they usually
compute radiance values for each individual pixel directly. As such, these
algorithms are pixel-driven, but many of the principles outlined here can
be equally applied to other classes of light transport algorithms, such as
finite element techniques (to be discussed in the next chapter).

First, we present a brief history of path-tracing algorithms in the con-
text of global illumination algorithms (Section 5.1). Then, we discuss the
camera set-up that is common to most pixel-driven rendering algorithms
(Section 5.2) and introduce a simple path-tracing algorithm in Section 5.3.
In Section 5.4, we introduce various methods for computing the direct il-
lumination in a scene, followed by similar sections for the special case of
environment map illumination (Section 5.5) and indirect illumination (Sec-
tion 5.6). Finally, in Section 5.7, the light-tracing algorithm is discussed,
which is the dual algorithm of ray tracing.

5.1 Brief History

Path-tracing algorithms for global illumination solutions started with the
seminal paper on ray tracing by Whitted [194]. This paper described a
novel way for extending the ray-casting algorithm to determine visible sur-
faces in a scene [4] to include perfect specular reflections and refractions.

1The terms ray tracing and path tracing are often used interchangeably in literature.
Some prefer to use the term path tracing for a variant of ray tracing where rays do not
split into multiple rays at surface points.
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108 5. Stochastic Path-Tracing Algorithms

At the time, ray tracing was a very slow algorithm due to the number of
rays that had to be traced through the scene, such that many techniques
were developed for speeding up the ray-scene intersection test (see [52] for
a good overview).

In 1984, Cook et al. [34] described stochastic ray tracing. Rays were
distributed over several dimensions, such that glossy reflections and refrac-
tions, and other effects such as motion blur and depth of field, could be
simulated in a coherent framework.

The paper of Kajiya [85] applied ray tracing to the rendering equation,
which described the physical transport of light (see Chapter 2). This tech-
nique allowed full global illumination effects to be rendered, including all
possible interreflections between any types of surfaces.

Other Monte Carlo sampling techniques were applied to the rendering
equation, the most complete being bidirectional ray tracing, introduced by
Lafortune [100] and Veach [200].

5.2 Ray-Tracing Set-Up

In order to compute a global illumination picture, we need to attribute
a radiance value Lpixel to each pixel in the final image. This value is a
weighted measure of radiance values incident on the image plane, along a
ray coming from the scene, passing through the pixel, and pointing to the
eye (Figure 5.1). This is best described by a weighted integral over the
image plane:

Lpixel =
∫

imageplane

L(p→ eye)h(p)dp

=
∫

imageplane

L(x→ eye)h(p)dp,
(5.1)

with p being a point on the image plane, and h(p) a weighting or filtering
function. x is the visible point seen from the eye through p. Often, h(p)
equals a simple box filter such that the final radiance value is computed by
uniformly averaging the incident radiance values over the area of the pixel.
A more complex camera model is described in [95].

The complete ray-tracing set-up refers to the specific configuration of
scene, camera, and pixels, with the specific purpose to compute radiance
values for each pixel directly. We need to know the camera position and
orientation, and the resolution of the target image. We assume the image
is centered along the viewing axis. To evaluate L(p → eye), a ray is cast
from the eye through p, in order to find x. Since L(p→ eye) = L(x→ −→xp),
we can compute this radiance value using the rendering equation.
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Stochastic Radiosity

The algorithms discussed in the previous chapter directly compute the in-
tensity of light passing though the pixels of the virtual screen. In contrast,
this chapter covers methods that compute a so-called world space repre-
sentation of the illumination in a three-dimensional scene. Very often, this
object space representation consists of the average diffuse illumination on
triangles or convex quadrilaterals into which a three-dimensional model
has been tessellated. There are, however, plenty of other possibilities, too.
Since diffuse illumination is best modeled by a quantity called radiosity
(see Section 2.3.1), such methods are usually called radiosity methods.

The main advantage of computing the illumination in object space is
that generating new views of a model takes less work, compared to render-
ing from scratch. For instance, graphics hardware can be used for real-time
rendering of an “illuminated” model, with colors derived from the precom-
puted average diffuse illumination. Also, path tracing can be augmented
to exploit precomputed illumination in object space, allowing very high
image quality. The combination of path tracing after a radiosity method
is an example of a two-pass method. Two-pass methods, and other hybrid
methods, are the topic of Chapter 7.

The most well-known algorithm for computing an object space repre-
sentation of illumination is the classic radiosity method [56, 28, 133]. In
this chapter, we will present a brief overview of the classic radiosity method
(Section 6.1). More introductory or more in-depth coverage of the classic
radiosity method can be found in textbooks such as [29, 172]. We will focus
on a range of radiosity methods that matured only recently, since the pub-
lication of these books. In particular, we describe three classes of radiosity
algorithms, based on stochastic sampling, introduced in Chapter 3.

The first class, called stochastic relaxation methods (Section 6.3),
is based on stochastic adaptations of classic iterative solution methods
for linear systems such as the Jacobi, Gauss-Seidel, or Southwell
iterative methods.
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The solution of linear systems, such as those that occur in the classic
radiosity method, is one of the earliest applications of the Monte Carlo
method [50, 224]. They are based on the notion of a discrete random walk.
Their application to radiosity, which leads to algorithms we call discrete
random walk radiosity methods, is discussed in Section 6.4.

The third class of Monte Carlo radiosity methods (Section 6.5) is very
similar to the random walk methods for linear systems but solves the radios-
ity or rendering integral equation directly, rather than the radiosity linear
system. The random walks of these methods are nothing but simulated
photon trajectories. The density of surface hit points of such trajectories
will be shown to be proportional to radiosity. Various density estimation
methods known from statistics [175] can be used in order to estimate ra-
diosity from the photon trajectory hit points.

These three classes of Monte Carlo radiosity methods can be made more
efficient by applying variance-reduction techniques and low-discrepancy sam-
pling, which have been discussed in general in Chapter 3. The main tech-
niques are covered in Section 6.6.

This chapter concludes with a discussion of how adaptive meshing, hi-
erarchical refinement, and clustering techniques can be incorporated into
Monte Carlo radiosity (Section 6.7). Combined with adaptive meshing,
hierarchical refinement, and clustering, Monte Carlo radiosity algorithms
allow us to precompute, on a state-of-the-art PC, the illumination in three-
dimensional scenes consisting of milions of polygons, such as models of large
and complex buildings.

Monte Carlo radiosity methods all share one very important feature:
unlike other radiosity algorithms, they do not require the computation and
storage of so-called form factors (Section 6.1). This is possible because
form factors can be interpreted as probabilities that can be sampled effi-
ciently (Section 6.2). The photon density estimation algorithms in Section
6.5 do not even require form factors at all. Because the nasty problems
of accurate form factor computation and their storage are avoided, Monte
Carlo radiosity methods can handle much larger models in a reliable way.
They are also significantly easier to implement and use than other radios-
ity methods. In addition, they provide visual feedback very early on and
converge gracefully. Often, they are much faster, too.

In this chapter, we will place a large number of (at first sight) unrelated
algorithms in a common perspective and compare them to each other. We
will do so by analyzing the variance of the underlying Monte Carlo esti-
mators (Section 3.4.4). The same techniques can be used to analyze other
Monte Carlo rendering algorithms, but they are easier to illustrate for dif-
fuse illumination, as is done in this chapter.
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Hybrid Algorithms

Chapters 5 and 6 described two of the most popular global illumination
algorithms: ray tracing and radiosity. These algorithms have evolved sig-
nificantly since they were first introduced, but mainly, the core ideas for
both are still the same: a ray-tracing algorithm computes radiance values
for every pixel in the final image by generating paths between the pixel and
the light sources; a radiosity algorithm computes a radiance value for every
mesh element in the scene, after which this solution is displayed using any
method that can project polygons to the screen.

This chapter focuses on algorithms that try to combine the best of both
worlds. These algorithms often use various elements from the previously
mentioned approaches, and therefore we call them hybrid algorithms.

7.1 Final Gathering

Once a radiosity solution is computed and an image of the scene is gener-
ated, Gouraud shading is often used to interpolate between radiance values
at vertices of the mesh, thus obtaining a smoothly shaded image. This tech-
nique can miss significant shading features. It is often difficult to generate
accurate shadows; shadows may creep under surfaces (shadow leaks and
light leaks), Mach-band effects may occur, and other secondary illumina-
tion effects containing features with a frequency higher than that which
the mesh can represent are also possible.

One way of solving this is to consider the radiosity solution to be a
coarse precomputed solution of the light distribution in the scene. During
a second phase, when the image is actually generated, a more accurate
per-pixel illumination value is computed, which is based on the ray-tracing
algorithm.
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As was explained in Chapter 5, the ray-tracing set-up for computing
the radiance for a pixel is given by

Lpixel =
∫

imageplane

L(p→ eye)h(p)dp.

L(p → eye) equals L(x → Θ) with x being the visible point in the scene
and Θ the direction from x towards the eye. Suppose we have a precom-
puted radiance solution in a diffuse scene, given by L̃(y) for every surface
point y. We can then acquire the value of L(x → Θ) by writing the ren-
dering equation, approximating the radiance distribution in the kernel of
the transport equation by L̃(y):

L(x→ Θ) = L(x) = Le(x) + fr(x)
∫

A

L̃(y)G(x, y)V (x, y)dAy (7.1)

or equivalently, using integration over the hemisphere,

L(x) = Le(x) + fr(x)
∫

Ωx

L̃(r(x,Ψ)) cos(Nx,Ψ)dωΨ. (7.2)

This integral can now be evaluated using Monte Carlo integration. The
main difference with the stochastic ray-tracing algorithm is that there is
no recursive evaluation of the radiance distribution, since it is substituted
by the precomputed radiosity solution. Thus, one gains the advantage of
using an accurate per-pixel method, using a fast precomputed finite element
method.

Various sampling strategies can now be used to evaluate either Equation
7.1 or 7.2. In a diffuse scene, with a constant radiance value L̃j for each
surface element j, the above equation can also be rewritten as

L(x) = Le(x) + fr(x)
∑

j

L̃j

∫
Aj

G(x, y)V (x, y)dAy. (7.3)

7.1.1 Simple Hemisphere Sampling
The most straightforward approach is to sample random directions over
the hemisphere and evaluate L̃ at the nearest intersection point. This
strategy is very similar to simple stochastic ray tracing (Section 5.3) and
will result in a lot of noise in the final image. The reason is the same as
with stochastic ray tracing: light sources will be missed by just randomly
sampling the hemisphere. Therefore, splitting the integral into a direct and
indirect term is a good approach for increasing the accuracy.

To save time, only the direct illumination can be computed using a per-
pixel gathering step [167], and the indirect illumination can be read out
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The Quest for Ultimate Realism
and Speed

In this last chapter, we cover a number of topics that are the subject of
ongoing research. Indeed, the quest for realism and speed has not yet come
to an end.

While deriving the rendering equation in Chapter 2, several restrictions
were imposed on light transport. We assumed that wave effects could be
ignored and that radiance is conserved along its path between mutually
visible surfaces. We also assumed that light scattering happens instanta-
neously; that scattered light has the same wavelength as the incident beam;
and that it scatters from the same location where it hits a surface. This is
not always true. We start this chapter with a discussion of how to deal with
participating media, translucent objects, and phenomena such as polariza-
tion, diffraction, interference, fluorescence, and phosphorescence, which do
not fall within our assumptions. We need to refine our light transport
model in order to obtain high realism when these phenomena come into
play. Fortunately, most of the algorithms previously covered in this book
can be extended rather easily to handle these phenomena, although some
new and specific approaches exist as well.

Radiometry is, however, only part of the story, albeit an important part.
Most often, computer graphics images are consumed by human observers,
looking at a printed picture or a computer screen, or watching a computer
graphics movie in a movie theater. Unfortunately, current display systems
are not nearly capable of reproducing the wide range of light intensities
that occurs in nature and that results from our accurate light transport
simulations. These radiometric values need to be transformed in some way
to display colors. For good realism, this transformation should take into
account the response of the human vision system, which is known to be
sophisticated and highly nonlinear. Human visual perception can also be
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exploited to avoid computing detail that one wouldn’t notice anyway, thus
saving computation time.

The last part of this chapter deals with rendering speed. We cover
how frame-to-frame coherence can be exploited in order to more rapidly
render computer animation movies or walk-throughs of nondiffuse static
environments. Very recently, a number of approaches have appeared that
go even further on this track and achieve interactive global illumination,
without predefined animation script or camera path.

8.1 Beyond the Rendering Equation

8.1.1 Participating Media
We assumed in Chapter 2 that radiance is conserved along its path between
unoccluded surfaces. The underlying idea was that all photons leaving the
first surface needed to land on the second one because nothing could happen
to them along their path of flight. As everyone who has ever been outside
in mist or foggy weather conditions knows, this is not always true. Photons
reflected or emitted by a car in front of us on the road for instance, will often
not reach us. They will rather be absorbed or scattered by billions of tiny
water or fog droplets immersed in the air. At the same time, light coming
from the sky above will be scattered towards us. The net effect is that
distant objects fade away in gray. Even clear air itself causes photons to be
scattered or absorbed. This is evident when looking at a distant mountain
range, and it causes an effect known as aerial perspective. Clouds in the
sky scatter and absorb sunlight strongly, although they don’t have a real
surface boundary separating them from the air around. Surfaces are also
not needed for light emission, as in the example of a candle flame.

Our assumption of radiance conservation between surfaces is only true
in a vacuum. In that case, the relation between emitted radiance and
incident radiance at mutually visible surface points x and y along direction
Θ is given by the simple relation

L(x→ Θ) = L(y ← −Θ). (8.1)

If a vacuum is not filling the space between object surfaces, this will
cause photons to change direction and to transform into other forms of
energy. In the case of the candle flame, other forms of energy are also
transformed into visible light photons. We now discuss how these phe-
nomena can be integrated into our light transport framework. We start
by studying how they affect the relation (Equation 8.1) between emitted
radiance and incident radiance at mutually visible surface points x and y.
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Conclusion

9.1 Achievements of Photorealistic Rendering

Photorealistic rendering and global illumination algorithms have come a
long way since the publication of the first recursive ray-tracing algorithm
in 1979. There has been a gradual evolution from simple algorithms, some
of them deemed to be hacks by today’s standards, to very advanced, fully
physically based rendering algorithms.

It is now possible, within a reasonable amount of time, to generate an
image that is indistinguishable from a photograph of a real scene. This
has been achieved by carefully researching the physical processes that
form the basis of photorealistic rendering: light-material interaction, light
transport, and the psychophysical aspects of the human visual system.
In each of these domains, extensive research literature is available. In
this book, we have tried to give an overview of some of these aspects,
mostly focusing on the light transport mechanism. As in most modern
algorithms, we strongly believe that a good understanding of all funda-
mental issues is the key to well-designed global illumination light transport
algorithms.

Global illumination has not yet found its way to many mainstream
applications, but some use has already been made in feature-animation
films and to a limited extent in some computer games. High-quality ren-
dering of architectural designs has become more common (although still
unusual), and car manufacturers have become more aware of the possibili-
ties of rendering cars in real virtual environments for glossy advertisements.
Moreover, recent advances have indicated that full interactive ray tracing
is already a possibility for specialist applications and machinery.

As such, photorealistic rendering has certainly propelled forward the
development of high-quality visualization techniques.
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9.2 Unresolved Issues in Photorealistic Rendering

Research in photorealistic rendering is still alive and well, with a large
number of publications devoted to the topic every year. There are still
a number of unresolved issues, which will undoubtedly form the topic of
future research. We have tried to compile a few topics we think will become
heavily researched in the near future:
Acquisition and modeling of BRDFs. There has been quite some effort to
measure the BRDF of real materials and to design usable models for use in
computer graphics, but this whole field still needs a lot of research to pro-
vide us with reliable, accurate, and cheap ways to evaluate BRDF models.
Measuring devices such as gonio-reflectometers should be made adaptive,
such that they can measure more samples in those areas of the BRDF where
more accuracy is needed. Image-based acquisition techniques will be used
much more often, driven by cheaper digital cameras.
Acquisition of geometry and surface appearance. Computer vision has de-
veloped several techniques for acquiring the geometry of real objects from
camera images, but it is still a major problem when the surface of the
object is nondiffuse or when the nature of the illumination on the object
is unknown. Surface appearance, such as textures and local BRDFs, has
recently been captured based on photographs as well. Combining these
two fields in order to build an integrated scanner seems a very promis-
ing research area. Also, emphasis should be placed on in-hand scanning,
where the user manipulates an object in front of a camera and all relevant
characteristics are captured.
Self-adaptive light transport. The light transport simulation algorithms out-
lined in this book come in many different flavors and varieties. Some algo-
rithms perform better in specific situations than others (e.g., radiosity-like
algorithms behave better in pure diffuse environments, ray tracing works
well in highly specular scenes, etc.) Little effort has been made so far to
try to make an overall global illumination algorithm that behaves in an
adaptive way in these various situations. Such an algorithm would pick
the right mode of simulating the light transport, depending on the nature
of the surfaces, the frequency of the geometry, the influence on the final
image, etc. Also, partially computed illumination results should always be
stored and available for future use by different light transport modes.
Scalable and robust rendering. Scenes that include very high complexity
in illumination, materials, and geometry remain challenging. Better and
cheaper acquisition technology is driving the demand for rendering such
complex scenes in the future. Currently, a user has to manually pick ap-
proximations, rendering algorithms, and levels of detail to achieve reason-
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able quality and performance for such scenes. But this manual approach is
clearly not desirable, particularly when we get to the realm of applications
such as games where players interact with dynamically varying scenes while
generating content on the fly. Robust algorithms that can scale to com-
plex scenes and can automatically handle scene complexity without user
intervention will be critical in the future.

Geometry-independent rendering. Current light transport algorithms as-
sume that the geometry of the scene is known and explicitly compute a
huge number of ray-object intersections in order to know where light gets
reflected off surfaces. In the future, it is likely that primitives, whose ge-
ometry is not explicitly known, will be used in scenes to be rendered. Such
primitives might be described by a light field, or another implicit descrip-
tion of how light interacts with the object (e.g., a series of photographs).
Incorporating such objects in a global illumination algorithm will pose new
problems and challenges. Also, storing partial illumination solutions in-
dependent of the underlying geometry (e.g., photon mapping) should be
researched further.

Psychoperceptual rendering. Radiometric accuracy has been the main driv-
ing force for global illumination algorithms, but since most images are to
be viewed by human observers, it is usually not necessary to compute up to
this level of accuracy. New rendering paradigms should be focused around
rendering perceptually correct images. A perceptually correct image does
not necessarily have all the radiometric details, but a viewer might still
judge the image to be realistic. It might be possible not to render certain
shadows, or to drop certain highlights, or even simplify geometry, if this
would not harm the human observer judging the image as being realistic.
Radiometric accuracy is best judged by comparing a rendered image with
a reference photograph and measuring the amount of error. Psychoper-
ceptual accuracy is probably best judged by having a human look at the
rendered picture and asking whether the picture looks “realistic.” However,
at this point, very little research is available about how this could be done.

Integration with real elements. It is likely that more integration between
real and virtual environments will become an integral part of many appli-
cations. This does not only entail putting real objects in virtual scenes,
but also putting virtual elements in real scenes, e.g., by using projectors or
holography. A perfect blend between the real and virtual elements becomes
a major concern. This blend includes geometric alignment of real and vir-
tual elements, but also consistent illumination. For example, a virtual
element could throw shadows on real objects and vice versa. Developing
a good framework for achieving such an integrated rendering system will
probably evolve into a major research field during subsequent years.
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As a major theme covering all these issues, one can think, or dream,
about what the ultimate photorealistic rendering would look like in the fu-
ture. It is very hard to make any predictions about any specific algorithmic
techniques, but it is nevertheless possible to list a few of the requirements
or features such a rendering tool should possess:
Interactivity. Any rendering algorithm of the future should be able to render
scenes at interactive speeds, irrespective of scene or illumination complex-
ity.
Any material, any geometry. All possible materials, from pure diffuse to
pure specular, should be handled efficiently and accurately. Moreover, any
type of geometry should be handled as well, whether it is a low-complexity
polygon model or a scanned model containing millions of sample points.
Many different input models. It should be possible to take any form of input,
whether it is a virtual model or a model based on acquisition from the real
world. This probably means leaving the classic polygon model and texture
maps for describing geometry and surface appearance and adapting other
forms of geometry representation.
Realism slider. Depending on the application, one might settle for different
styles of realism: for example, realistic lighting as one would experience in
real life; studio-realism with lots of artificial lighting designed to eliminate
unwanted shadows; lighting designed for optimally presenting products and
prototypes, etc. This should be possible without necessarily altering the
scene input or configuration of the light sources.

9.3 Concluding Remarks

Computer graphics is a very exciting field in which to work and is probably
one of the most challenging research areas in computer science because it
has links with many other disciplines, many of them outside the traditional
computer science community. It is exactly this mix with disciplines such
as art, psychology, filmmaking, biology, etc. that makes computer graphics
very attractive to many students and enthusiasts.

The authors have an accumulated experience of more than 40 years in
this field, but we still have the ability to be amazed and surprised by many
of the new exciting ideas that are being developed each year. By writing
this book, we hope to have made a small contribution in keeping people
motivated and enthusiastic about computer graphics, and we can only hope
that someday in the future, an exciting new computer graphics technique
will develop from some of the ideas presented here.
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A Class Library for
Global Illumination

Global illumination is all about generating paths connecting a virtual cam-
era with a light source. In this appendix, we propose a library of software
classes that will facilitate generating such paths in a computer program, by
hiding the details of geometry and materials representation and ray casting
from a higher-level algorithm implementation.

The library offers the following building blocks:

• Classes for representing path nodes, such as a point on a light
source, a surface scattering point, the viewing position, etc. (Sec-
tion A.1).

• Classes for light source sampling. These classes generate path
nodes that serve as the head of light paths (Section A.2).

• Support classes, representing a virtual screen buffer, classes for
doing tone mapping, etc. (Section A.3).

The relationship between the classes is depicted in Figure A.1. Some
example code fragments, illustrating the use of these classes, are presented
in Section A.4.

The interface we describe here does not include a representation of ge-
ometry or materials itself. Such a representation is, of course, required
in an actual implementation. Our implementation, on top of a VRML-
based scene graph management library, is available from this book’s website
(http://www.advancedglobalillumination.com). In our experience, it is easy
to port the class library to other global illumination platforms. Algorithms
implemented on top of this interface may be portable to other global illumi-
nation systems supporting this interface almost without modifications. Our

305



�

�

�

�

�

�

�

�
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Figure A.1. Graphical overview of the classes contained in the library described
here.

experiments have indicated that the additional computation cost caused by
the interface is relatively small: on the order of 10% to 20% of the render-
ing time at most, even if the underlying scene graph management, shader
implementation, and ray-tracing kernel are highly optimized. The pro-
gramming language we used in our implementation is C++. The same
interface can obviously also be realized using a different object-oriented
programming language.

A.1 Path Node Classes

A.1.1 Overview

All the algorithms described in this book require that light paths or eye
paths are generated stochastically. These paths have an associated value
and a probability density (PDF). In order to form an image, average ratios
are computed of path values over their PDFs.
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The value associated with a path is always the product of values asso-
ciated with the nodes in the path and transition factors such as vis(x, y)
cos θy/r

2
xy between subsequent nodes x and y. The value associated with

a path node depends on the type of node. For instance, for a surface scat-
tering event, it is the BSDF times the outgoing cosine; for a light source
node, it is the self-emitted radiance, etc.

The PDF indicates the chance that a particular path is being generated.
It is also the product of PDFs associated with each node in the path and
transition factors. The PDF associated with a surface scattering node, for
instance, is the probability by which a scattered light direction is sampled;
for a light source node, it is the probability of sampling a light emission
direction on a light source.

We call every event at which a path is generated, or its trajectory
changed, a path node. The library contains a representation for a variety
of path nodes corresponding to:

• Emission of an eye ray through a virtual screen pixel, that is, emission
of potential: see EyeNode class (Section A.1.3).

• Emission of light, at a surface or from the background (for instance,
a model for sky illumination or a high dynamic range environment
map): see EmissionNode class (Section A.1.4).

• Scattering of light or potential at a surface, or light/potential disap-
pearing into the background: see ScatteringNode class (Section A.1.5).

A full path corresponds to a list of such path nodes.

A.1.2 Common Interface: The PathNode Base Class
All path node classes inherit from a single PathNode base class. The
PathNode class encapsulates the common properties of all path nodes and
provides a uniform interface, so that complete algorithms can be imple-
mented without having to know what types of path nodes may be gener-
ated. The main members of the PathNode class are:

• The cumulative probability density by which a path up to a given
node has been generated.

• The cumulative value associated with the path up to a given node.

• An eval() member function for querying the value (BSDF, EDF,
etc.), path survival PDF, the PDF of sampling a given outgoing di-
rection, and the outgoing cosine factor (if applicable) associated with
the path node.



�

�

�

�

�

�

�

�

308 A. A Class Library for Global Illumination

• A sample() function that calculates from two random numbers whether
or not a path at a node shall be expanded and, if so, in what direction.

• A trace() function that returns a new path node resulting from
tracing a ray into a given direction. The resulting node is always a
scattering node (see Section A.1.5). Its precise type depends on the
event that occurs next: If the ray hits a surface, a SurfaceNode is
returned. If the ray disappears to the background, a BackgroundNode
is returned. The trace() function also computes geometric factors
associated with the transition to the new path node and properly
initializes the cumulative PDF and value of the resulting path node.

eval(), sample(), and trace() are virtual member functions, imple-
mented in children classes of PathNode. We choose to provide a single
eval() function, for evaluating everything related to a path node, in order
to minimize the number of virtual function calls and in order to make it
easier to share the calculation of certain partial results between the value
and the PDF. The latter can result in significant time savings. For instance,
PDFs are quite often very similar to values. Results are filled in objects
pointed to by pointers passed as parameters to the eval() function. If null
pointers are passed, corresponding quantities (value, survival or direction
sampling PDF, outgoing cosine) are not computed if not needed for other
results. In the same spirit, the sample() and trace() functions can also
return values and PDFs that are computed on the fly if nonnull pointer
arguments are passed for filling in such side results. The trace() function
optionally accepts a set of pointers to path node objects of each type that
can be returned, in order to avoid dynamic storage allocation and to allow
easy type checking afterwards. This will be illustrated in Section A.4.

Besides the above members, the PathNode base class also maintains and
offers:

• The depth of the path node in its path: 0 for the head of a path,
depth of the parent node plus 1 for nonhead path nodes.

• The light emission and scattering modes to take into account for eval-
uation and sampling (diffuse/glossy/specular emission/reflection/
refraction);

• A pointer to the parent node in the path.

• Various flags: whether the path node belongs to a light path or eye
path (required for making certain corrections due to nonsymmetric
light scattering [203]), whether the path node is at the end of a sub-
path, whether it has a finite position in space, or whether it is located
“at infinity” (for instance: background emission nodes).
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• Member functions for accessing the position of a path node in space,
or the geometry at that location, or for obtaining the head of the path,
or direction and distance (taken to be 1 for background nodes) to
another path node, or for computing visibility with regard to another
node.

• Static member variables indicating the minimum and maximum path
depth for generating paths. These values affect survival probabilities
computed in the sample() and eval() functions.

• Some more member functions for convenience: scatter() computes
the radiance or potential accumulated along a path and scattered
into a given direction. The expand() member function combines
sample() and trace() in a single function.

A.1.3 Pixel Filtering and Sampling: The EyeNode Class

The EyeNode class represents the head of eye paths. The position of an
EyeNode object is the position of the pinhole camera used to view a scene.
EyeNode objects are associated with a virtual screen pixel. They encapsu-
late pixel filtering and sampling. The value returned by EyeNode::eval()
is the pixel measurement function of a given direction (see Section 5.7.1).
EyeNode::sample() will select a direction through the associated virtual
screen pixel for shooting an eye ray. Currently, a simple box pixel filter is
implemented.

A.1.4 Light Emission: The EmissionNode Classes

An EmissionNode object represents the head of a light path. It cor-
responds with a point on a surface light source (SurfaceEmissionNode
sub-class) or a direction towards the background for background illumina-
tion such as sky illumination or a high dynamic range environment map
(BackgroundEmissionNode subclass). The value associated with an emis-
sion node is the self-emitted radiance into a given direction. The sample()
member function will sample a direction according to the directional emis-
sion distribution at a surface emission location. For background emission
nodes, where the emission direction is encoded in the node, sample() will
select a point on the projection of the scene bounding box perpendicular
to the emission direction. In both cases, sample() results in a point and
a direction, enough for constructing a ray to shoot self-emitted radiance
along.

Emission nodes can be generated by means of the EmissionSampler
classes described in Section A.2.
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A.1.5 Light and Potential Scattering: The ScatteringNode Classes

The trace() function of any path node usually results in a new
ScatteringNode object representing surface scattering (SurfaceNode) or
light or potential that disappears into the background (BackgroundNode).

Surface Scattering: SurfaceNode Class

The position of a SurfaceNode object is the position on the surface of
an object in the scene at which a light path or eye path can be reflected,
refracted, or absorbed. The value associated with such a node is the BSDF
for a given direction. By default, the survival probability is computed based
on the fraction of incident illumination or potential that will be scattered
rather than absorbed. It depends on the direction of incidence and is, of
course, affected by the currently required minimum and maximum path
length. The “outgoing cosine” computed by SurfaceNode::eval() is the
absolute value of the cosine between a given outgoing direction and the
shading normal at the scattering location. The sample() member function
samples an outgoing direction ideally according to the BSDF times the
outgoing cosine. SurfaceNode objects know whether they belong to a
light path or eye path, and appropriate correction factors for nonsymmetric
scattering due to bump mapping or normal interpolation are applied on the
BSDF [203]. There is also a version of SurfaceNode::eval() that allows
us to specify incident directions other than the one for which the path node
was constructed.

Occasionally, a path will hit a surface light source. In order to evaluate
self-emitted radiance at a scattering location, and to compute the probabil-
ity of obtaining the surface location by means of surface emission sampling
(with a SurfaceEmissionSampler object, see Section A.2), appropriate
source radiance() and source pdf() member functions are provided.
Some algorithms, like bidirectional path tracing, require more complex op-
erations if a path hits a light source. A conversion from the SurfaceNode
class to the SurfaceEmissionNode class is provided in order to meet such
requirements. An on light source() member function returns whether
or not a SurfaceNode lays on a light source.

Paths Disappearing into the Background: BackgroundNode Class

If a path doesn’t hit a surface, it’s said to disappear into the background. A
special BackgroundNode marks the end of such paths. The BackgroundNode
class inherits from the ScatteringNode base class, but of course, no scat-
tering happens: A path that disappears into the background is always
terminated. The value and PDFs returned by BackgroundNode::eval()
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are always zero, and the BackgroundNode::sample() member function will
always result in an error. The trace() function returns a null result.

If background illumination has been modeled in a scene to be rendered,
however, the BackgroundNode::source radiance() and BackgroundNode
::source pdf() member functions will compute the self-emitted radiance
received from the background along the path direction, as well as the
probability of sampling that direction using a BackgroundEmissionSampler
object. Also for background “scattering,” a conversion from the class
BackgroundNode to the class BackgroundEmissionNode is provided so all
queries for self-emitted illumination can be performed at a background
“scattering” node.

A.2 Light Source Sampling Classes

A scene can contain both a number of surfaces that emit light sponta-
neously, as well as a model for background illumination such as sky light
or a high dynamic range environment map. A second set of classes pro-
vided by the library will select either a position on a light source sur-
face (SurfaceEmissionSampler class) or a direction for background illu-
mination (BackgroundEmissionSampler class). Unlike path node objects,
which are very frequently created and destroyed during the global illumina-
tion computations, there is normally only a single surface and background
emission sampler active while rendering a frame.

A.2.1 Surface Emission Sampling: The SurfaceEmissionSampler
and WeightedSurfaceEmissionSampler Classes

A SurfaceEmissionSampler class object maintains a list (or better, an
array) of light source surfaces in the scene. Our current implementation
assumes scenes modeled out of triangles, so our SurfaceEmissionSamplers
will contain a list of pointers to light-emitting triangles. It is straightfor-
ward to extend the interface to handle curved light sources, too. Besides
member functions for building up such a list, the main member functions
are:

• A sample() function that will select a triangle from the list and
return a point on the selected triangle as a SurfaceEmissionNode.
Triangles are selected with a probability proportional to their self-
emitted power. Points are selected uniformly on a triangle.

• A pdf() member function returns the probability density of sampling
a given point on a given triangle using sample().
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The pdf() member function assumes an index mechanism for
quickly locating a given triangle in the list of light source triangles. Our
SurfaceEmissionNodes and SurfaceNodes contain a pointer to the surface
triangle on which they are located. This allows us to find out easily whether
a SurfaceNode is located on a light source, or to calculate all relevant light
source quantities.

Weighted Surface Emission Sampling

Sometimes, surface emission sampling according to emitted power is not
optimal, and other probabilities for selecting light source triangles are re-
quired. One example of such a case is view-importance–driven light source
sampling (Section 5.4.5), when a light source needs to be selected ac-
cording to its estimated impact on a particular view. A powerful, but
distant or occluded light source for instance, receives a lower probabil-
ity of being selected than a less powerful, but nearby, light source. The
WeightedSurfaceEmissionSampler subclass of SurfaceEmissionSampler
allows us to enable/disable light source triangles from a list and to attach
weights to light source triangles in a very general way. For convenience,
a member function is provided that will assign weights according to light
source distance and orientation with regard to a specified point and nor-
mal. Our implementation also contains an adapted version of a light-path
tracer that estimates the light flux each light source contributes to the cur-
rent view and that assigns light source weights proportional to these fluxes
eventually.

A.2.2 Background Emission Sampling:
The BackgroundEmissionSampler Class

The BackgroundEmissionSampler class works in a very similar way to
the SurfaceEmissionSampler class, except that usually, the number of
background light sources is small, and it returns a sampled direction to
the background in the form of a BackgroundEmissionNode. Background
directions are selected with a probability that reflects the intensity of self-
emitted radiance received from the direction. It is much harder to take into
account surface orientation here so there is no class for weighted background
emission sampling.

A.2.3 The EmissionSampler Wrapper Class

The library provides an EmissionSampler wrapper class that con-
tains a pointer to a WeightedSurfaceEmissionSampler and to a
BackgroundEmissionSampler for the scene. By default, surface emission
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sampling and background emission sampling receive a weight proportional
to the total emitted power from surfaces and the background, respectively.
In order to calculate these weights, it is necessary to know in what length
units a scene has been modeled. The default weights can, of course, be
modified in a program. Our adapted light tracer, described above, does so
after measuring the light flux contributed to the current view by surfaces
and background.

The public implementation provides only triangle light sources and
background emission. Other light sources, such as spherical or disc light
sources, can easily be added in the form of additional emission sampler
classes. The EmissionSampler wrapper class shall contain a reference to
all light source samplers, with proper weights, so that it can hide the variety
of light sources in a scene from the implementation of global illumination
algorithms by providing a single sample() function for any kind of light
emission.

A.3 Support Classes

The path node and sampler class interfaces are pretty much self-contained,
but they need to be embedded in a suitable working environment, of course.
For convenience, the library also contains a number of additional classes
providing such an environment. Unlike the path node class interface, it is
likely that some tuning will be needed in order to integrate these support
classes into your global illumination application.

A.3.1 A Pinhole Camera Virtual Screen Abstraction:
The ScreenBuffer Class

EyeNode class objects correspond to pixels on a virtual screen. Their im-
plementation requires an abstraction of a virtual screen buffer. The library
provides a ScreenBuffer class for this purpose. The ScreenBuffer class
represents the virtual screen of a pinhole camera. It offers member functions
getDirection() and getPixelCoord() for mapping pixel coordinates to
the corresponding primary ray direction and vice versa. A member function
setView() initializes the current view point, focus point, direction point
upwards, and field of view angle in the same way as the gluLookAt() func-
tion in OpenGL. The getPixelCoord() function returns whether or not a
primary ray direction points towards the screen. It is used in light tracing
and bidirectional path tracing in order to splat path contributions to the
screen, as shown in the examples (Section A.4.1).

The ScreenBuffer class also maintains two arrays of pixel color val-
ues: one usual set of low dynamic range RGB triplets plus transparency



�

�

�

�

�

�

�

�

314 A. A Class Library for Global Illumination

that can be displayed efficiently using, for instance, the glDrawPixels()
OpenGL function; and one set that contains high dynamic range color
values in 32-bit packed RGBE format [220]. The ScreenBuffer class of-
fers member functions clear(), clearRGBA(), clearHDR(), setPixel(),
getRGBAPixel(), getHDRPixel(), addPixel(), etc., for clearing, query-
ing, and modifying low and high dynamic range pixel color values.

A.3.2 Converting High to Low Dynamic Range Color Values:
The ToneMapper Classes

A global illumination algorithm computes and stores high dynamic range
pixel color values in the ScreenBuffer. A ToneMapper object will map
the high dynamic range pixels to RGB color triplets for display as ex-
plained in Section 8.2. Different tone mapping algorithms are implemented
in subclasses of a base ToneMapper class. Such classes maintain their own
set of required parameters, such as the world adaptation luminance in
the current view. The ScreenBuffer class provides a member function
adaptation luminance() for computing the world adaptation luminance
as the exponentiated mean logarithmic luminance of the virtual screen high
dynamic range pixel color values. The main member function provided by
the ToneMapper classes is a map() function that does everything to convert
the high dynamic range color values in a given ScreenBuffer object into
low dynamic range color values for display.

A.3.3 Integration into an Application: The Browser and Tracer
Classes

The library described here comes with an application in which several global
illumination algorithms have been implemented. We describe here two
additional classes that integrate the path node and sampler classes into
this application.

The Browser Classes

We implemented a Browser base class to group and maintain the whole
software environment in which the PathNode and EmissionSampler classes
operate:

• The scene graph. In our implementation, the scene graph is a
VRML97 scene graph with numerous extension nodes for represent-
ing physically based appearance and high dynamic range backgrounds
as well as color calibration parameters of the computer monitor on
which a model has been designed.
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• The interface to a ray-tracing engine needed for finding ray-object
intersections and for performing visibility queries.

• One instance of an EmissionSampler, containing a WeightedSurface-
EmissionSampler and a BackgroundEmissionSampler, as well as a
reference unweighted SurfaceEmissionSampler.

• A ScreenBuffer and a ToneMapper object.

The Browser base class does not support a graphical user interface,
and neither does it perform any global illumination computations itself.
It needs to be augmented with such capabilities by means of inheritance.
The Browser base class provides a virtual trace() member function, which
needs to be implemented in a child class in order to:

• Initialize the ScreenBuffer for the current view.

• Perform the real global illumination computations for the view.

• Call the ToneMapper in order to map computed high dynamic range
pixel colors into low dynamic range RGB color triplets for display.

• Display the results on a computer screen, or save them into a file.

The Tracer Classes

Rather than implementing each global illumination algorithm as a sep-
arate Browser subclass, we introduced yet another class, called Tracer,
providing a common software interface for global illumination algorithms.
Algorithms such as path tracing and light tracing (Chapter 5), bidirec-
tional path tracing (Section 7.3), a ray-traced version of the instant radios-
ity algorithm (Section 7.7), and photon mapping (Sectoin 7.6) are imple-
mented in PathTracer, LightTracer, BiDirTracer, InstantRadiosity,
and PhotonMapper child classes of the Tracer base class. The main func-
tions implemented by these classes are:

• An init() function performs initializations such as storage allocation
of large arrays for each frame to be rendered.

• A trace() function computes an image for the current view.

• A tonemap() function properly rescales ScreenBuffer high dynamic
range pixels and uses the current Browser’s ToneMapper object in
order to convert to displayable RGB color triplets.
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Our Browser subclass object creates an appropriate Tracer object ac-
cording to the desires of a user and calls the above listed Tracer functions
in its Browser::trace() handler.

In addition to the above functions, our Tracer classes also provide
member function for distributed computations, for instance, indicating how
to separate an image into several subimages to be computed on different
network clients, and how to merge the resulting pixel values computed by
each client afterwards.

A.4 Example Code Fragments

In this section, we provide some example code fragments, illustrating how
global illumination algorithms can be implemented on top of the path node
and sampler classes described previously.

A.4.1 A Light Tracer

We first present the core part of our LightTracer class, implementing light
particle tracing (see Section 5.7):

// scrn is pointer to the current ScreenBuffer object

// class Vec3 and class Spectrum represent 3D vectors and spectra

// lightsampler is pointer to current EmissionSampler object

int nrparticles; // nr of particles to trace

// splats particle on the screen

inline void LightTracer::splat(class PathNode *n)

{

float dist; // distance between eye and n

const Vec3 eyedir = scrn->eye.dirto(n->pos(), &dist); // direction

if (n->at_infinity()) dist = 1.; // don’t divide by square distance

float i, j; // compute pixel coordinates (i,j)

if (scrn->getPixelCoord(eyedir, &i, &j)) {

class EyeNode e(i, j); // eye node corresponding to pixel

if (visible(&e, n)) { // n is not occluded from the eye

float ncos, ecos; // cosine factors at the eye

// and at n

scrn->addPixel(i, j, e.scatter(eyedir, &ecos)

* n->scatter(-eyedir, &ncos)

* (ncos * ecos / (dist*dist * (float)nrparticles)));

}

}

}

inline void LightTracer::traceparticle(class PathNode *l)

{
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splat(l); // splat particle on screen

class PathNode *n = l->expand(); // expand path

if (n) traceparticle(n); // recurse

delete n;

}

void LightTracer::trace(void)

{

for (int i=0; i<nrparticles; i++) {

class EmissionNode *l = lightsampler->sample(); // sample lights

if (l) traceparticle(l); // trace light path

delete l;

}

}

In order to implement photon mapping, the splat() function shall be
modified in order to store SurfaceNode hit points n->pos(), incident di-
rection n->indir, and flux n->value/n->pdf in a photon map data struc-
ture. A ready-to-use implementation of a photon map data structure can
be found in Jensen’s book [83].

A.4.2 A Path Tracer

The implementation of a path tracer below is only slightly more compli-
cated, in order to avoid dynamic storage allocation and to obtain easy
checking of path node types returned by the PathNode::expand() and
EmissionSampler::sample() functions.

// Again, scrn and lightsampler are the current ScreenBuffer

// and EmissionSampler.

// Array of SurfaceNodes in order to avoid the need for

// dynamic storage allocation in PathNode::expand().

// Storage is allocated in setup(), and freed in cleanup().

class SurfaceNode* PathTracer::sbuf =0;

// nr of light samples (shadow rays) at each path surface hit

int PathTracer::nrlightsamples = 1;

// Compute score associated with path landing on a light source.

inline const Spectrum PathTracer::source(class ScatteringNode* s)

{

class Spectrum score(0.);

if (s->depth() <= 1 || nrlightsamples == 0) {

// Source contribution computed exclusively by means of

// scattering.

score = s->source_radiance() * s->value / s->pdf;

} else {

// Source contribution computed exclusively by means of

// light source sampling.
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}

return score;

}

// Light source sampling for computing direct illumination at

// the SurfaceNode s.

inline const Spectrum PathTracer::tracelight(class SurfaceNode* s)

{

// Avoid dynamic storage allocation

static class SurfaceEmissionNode sl;

static class BackgroundEmissionNode bl;

class EmissionNode *l = lightsampler->sample(&sl, &bl);

if (l) {

// cosine/distance at the light and at the surface

float lcos, scos, dist;

// dir/dist surface to light

const Vec3 dir = s->dirto(l, &dist);

// compute cosine at the light

l->eval(-dir, 0, 0, 0, &lcos);

// surface behind light or occluded

if (lcos <= 0 || !visible(s, l))

return Spectrum(0.);

else

return s->scatter(dir, &scos) * l->scatter(-dir)

* (scos * lcos / (dist * dist));

}

return Spectrum(0.);

}

// Light source sampling at surface scattering node s.

inline const Spectrum PathTracer::tracelights(class SurfaceNode* s)

{

class Spectrum score(0.);

if (nrlightsamples > 0) {

for (int i=0; i<nrlightsamples; i++) { // shoot shadow rays

score += tracelight(s);

}

score /= (float)nrlightsamples;

}

return score;

}

// Traces a path through the pixel represented by the EyeNode e

inline const Spectrum PathTracer::tracepixel(class EyeNode* e)

{

static class BackgroundNode b; // avoid dynamic storage allocation

class SurfaceNode *s = sbuf;

// sample + shoot eye ray

class ScatteringNode *n = e->expand(s, &b);

class Spectrum score(0.);

while (n) {

score += source(n); // self-emitted illumination
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if (n == s) // direct illumination: only surface nodes

score += tracelights(s);

n = n->expand(++s, &b); // indirect illumination: expand path

}

return score;

}

void PathTracer::setup(void)

{

sbuf = new SurfaceNode [PathNode::max_eye_path_depth];

}

void PathTracer::cleanup(void)

{

delete [] sbuf;

}

// computes image for current view

void PathTracer::trace(void)

{

setup();

for (int j=0; j<scrn->height; j++) {

for (int i=0; i<scrn->width; i++) {

class EyeNode e(i, j);

scrn->addPixel(i, j, tracepixel(&e));

}

}

cleanup();

}

A.4.3 Multiple Importance Light Source Sampling

When light reflection at a surface hit by a path is highly specular, it is usu-
ally much better to compute direct illumination by means of a scattered
ray rather than by light source sampling. We show here the modifications
to the path tracer implementation above, in order to calculate direct illu-
mination at path nodes by means of multiple importance sampling [201].
These modifications illustrate the use of the PathNode::eval() functions
in cases where the higher-level PathNode::scatter() functions fall short.
Some example results are shown in Figure A.2 on page 332.

// flag indicating whether or not to use bidirectional weighting

// for source contributions.

bool PathTracer::bidir_weighting = true;

// Compute score associated with path landing on a light source.

inline const Spectrum PathTracer::source(class ScatteringNode* s)

{
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class Spectrum score(0.);

if (s->depth() <= 1 || nrlightsamples == 0) {

// Source contributions computed exclusively by means of

// scattering.

score = s->source_radiance() * s->value / s->pdf;

} else if (bidir_weighting) {

// Source contributions computed by means of both scattering

// and light source sampling.

// Attenuate source radiance taking into account the probability

// that s would have been obtained by light source sampling

// rather than scattering.

float w_scattering = s->pdf / s->parent()->pdf;

float w_lsampling = s->source_pdf() * (float)nrlightsamples;

float w = w_scattering / (w_scattering + w_lsampling);

score = s->source_radiance() * s->value * (w / s->pdf);

} else {

// Source contributions computed exclusively by means of

// light source sampling.

}

return score;

}

// Light source sampling for computing direct illumination at

// the SurfaceNode s.

inline const Spectrum PathTracer::tracelight(class SurfaceNode* s)

{

// Avoid dynamic storage allocation

static class SurfaceEmissionNode sl;

static class BackgroundEmissionNode bl;

class EmissionNode *l = lightsampler->sample(&sl, &bl);

if (l) {

// cosine/distance at the light and at the surface

float lcos, scos, dist;

const Vec3 dir = s->dirto(l, &dist);

// compute cosine at the light

l->eval(-dir, 0, 0, 0, &lcos);

// surface behind light or occluded

if (lcos <= 0 || !visible(s, l))

return Spectrum(0.);

if (!bidir_weighting) {

// source() doesn’t pick up source radiance at hit surfaces

return s->scatter(dir, &scos) * l->scatter(-dir)

* (scos * lcos / (dist * dist));

}

else {

// Attenuate direct illumination taking into account the

// probability that the light source could have been hit

// by a scattered ray.

float survpdf, scatpdf; // survival and scattering pdf

class Spectrum fr, Le; // BRDF at s and EDF at l
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s->eval( dir, &fr, &survpdf, &scatpdf, &scos);

l->eval(-dir, &Le, 0, 0, 0);

float g = lcos / (dist*dist); // transition factor

float w_scattering = survpdf * scatpdf * g; // scatt. weight

float w_lsampling = l->pdf * (float)nrlightsamples;

float w = w_lsampling / (w_lsampling + w_scattering);

float G = scos * g;

return (s->value * fr * Le) * (G * w / (s->pdf * l->pdf));

}

}

return Spectrum(0.);

}

// The tracelights(), tracepixel() and trace() functions

// are the same as in the previous section.

A.4.4 A Bidirectional Path Tracer

Here is our code for a bidirectional path tracer:

// The purpose of the following arrays is to prevent dynamic

// storage allocation in PathNode::expand() and to allow

// efficient PathNode child class checking by comparing pointers.

class EyeNode eyenode; // head of eye path

class SurfaceEmissionNode senode; // surface emisison node

class BackgroundEmissionNode benode;// background emission node

// head of light path: pointer to senode or benode:

class EmissionNode *lightnode;

// surface scattering nodes

class SurfaceNode *eyesurfnodes, *lightsurfnodes;

class BackgroundNode eyebkgnode, lightbkgnode; // background nodes

// pointers surface or background scattering nodes:

class ScatteringNode **eyescatnodes, **lightscatnodes;

int eyepathlen, lightpathlen; // eye/light path length

class PathNode **eyepath, **lightpath; // pointers to path nodes

float *erdpdf, *lrdpdf; // reverse dir. selection probabilities

float *erspdf, *lrspdf; // survival prob. in reverse path direction

float *erhpdf, *lrhpdf; // hit densities in reverse path direction

float nrparticles; // nr of light particles traced

// for avoiding dynamic storage allocation when converting

// scattering nodes to emission nodes.

class BackgroundEmissionNode eeb;

class SurfaceEmissionNode ees;

// minimum and maximum light/eye/combined path length

static int min_light_path_length=2,

max_light_path_length=7,

min_eye_path_length=2,
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max_eye_path_length=7,

max_combined_path_length=7;

// trace an eye path by expanding the eye node e.

// . a pointer to the eye node goes into eyepath[0]

// . the surface scattering nodes come into eyesurfnodes[1] etc... and

// a pointer to them in eyepath[1] and eyescatnode[1], etc...

// . the final background node goes into eyebkgnode and a pointer to

// it in eyepath[.] and eyescatnode[.] as well.

// Returns length of the eye path (nr of segments = nr of nodes - 1)

int BiDirTracer::trace_eye_path(class EyeNode* e)

{

eyepath[0] = e; // store pointer to head of path

int i=1;

class ScatteringNode *n = e->expand(&eyesurfnodes[i], &eyebkgnode);

while (n) {

eyescatnodes[i] = n; // store ScatteringNode pointer

eyepath[i] = n; // store PathNode pointer

i++; // expand the path

n = n->expand(&eyesurfnodes[i], &eyebkgnode);

}

return i-1; // path length (nr of segments)

}

// Same as trace_eye_path, but for light path starting at the

// emission node l. Results go into lightpath[.], lightscatnodes[.],

// lightsurfnodes[.], and lightbkgnode.

// Returns length of light path.

int BiDirTracer::trace_light_path(class EmissionNode* l)

{

lightpath[0] = l;

int i=1;

class ScatteringNode *n = l->expand(&lightsurfnodes[i], &lightbkgnode);

while (n) {

lightscatnodes[i] = n;

lightpath[i] = n;

i++;

n = n->expand(&lightsurfnodes[i], &lightbkgnode);

}

return i-1;

}

// Computes the probabilities of sampling the eye path in reverse direction,

// that is: with incident and outgoing direction at the nodes exchanged.

// Result goes into:

// . erdpdf[i]: _D_irection sampling pdf for reverse directions at node i

// . erspdf[i]: unconstrained _S_urvival probability at node i (that is:

// not taking into account minimum and maximum required path length)
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// . erhpdf[i]: cos / distance squared from node i to node i-1 (_H_it pdf)

// The leading ’e’ in the names of the arrays stands for _E_ye path. The

// ’r’ for _R_everse.

void BiDirTracer::compute_reverse_eyepath_probs(void)

{

erdpdf[0] = erspdf[0] = erhpdf[0] = 0.; // no reverse tracing at the eye

if (eyepathlen == 0)

return;

class ScatteringNode* next = eyescatnodes[1];

erhpdf[1] = 0.; // chance of hitting eye point is 0 for pinhole camera

for (int i=1; i<eyepathlen; i++) {

class ScatteringNode* cur = next;

next = eyescatnodes[i+1];

class Vec3 toprevdir(cur->indir);

class Vec3 tonextdir(-next->indir);

erspdf[i] = cur->unconstrained_survival_probability(tonextdir);

cur->eval(tonextdir, toprevdir, 0, 0, &erdpdf[i], 0);

cur->eval(tonextdir, 0, 0, 0, &erhpdf[i+1]);

if (!next->at_infinity())

erhpdf[i+1] /= cur->position.sqdistance(next->position);

}

erspdf[eyepathlen] = erdpdf[eyepathlen] = 1.; // not needed

}

// Same for the light path.

void BiDirTracer::compute_reverse_lightpath_probs(void)

{

// no reverse tracing at the light source

lrdpdf[0] = lrspdf[0] = lrhpdf[0] = 0.;

if (lightpathlen == 0)

return;

class ScatteringNode* next = lightscatnodes[1];

lightnode->eval(-next->indir, 0, 0, 0, &lrhpdf[1]);

if (!lightnode->at_infinity() && !next->at_infinity())

lrhpdf[1] /= lightnode->pos().sqdistance(next->position);

for (int i=1; i<lightpathlen; i++) {

class ScatteringNode* cur = next;

next = lightscatnodes[i+1];

class Vec3 toprevdir(cur->indir);

class Vec3 tonextdir(-next->indir);

lrspdf[i] = cur->unconstrained_survival_probability(tonextdir);

cur->eval(tonextdir, toprevdir, 0, 0, &lrdpdf[i], 0);

cur->eval(tonextdir, 0, 0, 0, &lrhpdf[i+1]);

if (!next->at_infinity())

lrhpdf[i+1] /= cur->position.sqdistance(next->position);

}

lrspdf[lightpathlen] = lrdpdf[lightpathlen] = 1.; // not needed

}

// #define WEIGHT(w) (w) // balance heuristic

#define WEIGHT(w) (w*w) // power 2 heuristic
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// Computes weight associated with the combined eye sub path up to

// eyepath[e] and light sub path up to lightpath[l].

// Requires that e>=0 and l>=0. Weighting for e==-1 or l==-1

// (empty sub-path) is special because there is no connecting path

// segment (nor visibility test), see eyepath_on_light() and

// lightpath_on_camera().

float BiDirTracer::weight(int e, int l,

const Vec3& ltoedir, float ltoepdf, float etolpdf)

{

class PathNode* en = eyepath[e];

class PathNode* ln = lightpath[l];

// weight of "this" strategy is proportional to product of

// the pdfs of sampling the connected eye and light sub paths.

// If e<=0, we are dealing with pure light path tracing (see

// join_lightpath_with_eye() and an additional multiplication by

// the total nr of light paths being traced is needed (= nr of pixels

// since we trace one light path per pixel).

double lpdf = ln->pdf * (e<=0 ? nrparticles : 1.);

double epdf = en->pdf;

double thisw = WEIGHT(lpdf * epdf);

// compute sum of weights associated with all possible combinations

// of shorter/longer eye/light sub-paths leading to the same path between

// lightpath[0] and eyepath[0].

double sumw = thisw; // sum of weights

int i, j;

// shorter eye sub-paths / longer light sub-paths

i = e; j = l;

lpdf = ln->pdf; // prolonged light sub-path pdf

while (i>=0 && j<PathNode::max_light_path_depth) {

double lxpdf = 0.; // light path transition pdf

if (j == l) {

// transition probability for light path at lightpath[l]

// going towards eyepath[e]. Probability is given as an

// argument to this function.

// i == e

lxpdf = ltoepdf;

} else if (j == l+1) {

// evaluate transition probability for light path arriving at

// eyepath[e] from lightpath[l] and going towards eyepath[e-1].

// i == e-1

class ScatteringNode* escat = eyescatnodes[e];

float spdf = j < PathNode::min_light_path_depth // survival pdf

? 1.

: escat->unconstrained_survival_probability(-ltoedir);

float dpdf; // direction selection pdf

escat->eval(-ltoedir, escat->indir, 0, 0, &dpdf, 0);

lxpdf = spdf * dpdf * erhpdf[e]; // third factor is cosine/dist^2

} else {

// transition probability for light path at eyepath[i+1]
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// from eyepath[i+2] and going towards eyepath[i]. Use

// precomputed probabilities for reverse eye path).

// i<e-1

float spdf = j < PathNode::min_light_path_depth

? 1.

: erspdf[i+1];

lxpdf = spdf * erdpdf[i+1] * erhpdf[i+1];

}

lpdf *= lxpdf;

// The light sub-path now ends at eyepath[i]. Consider connection

// with eye sub-path ending at eyepath[i-1].

i--; j++;

double w = (i>=0) ? eyepath[i]->pdf * lpdf : lpdf;

if (i<=0) w *= nrparticles; // pure light path tracing case

sumw += WEIGHT(w);

}

// shorter light sub-paths / longer eye sub-paths

i = e; j = l;

epdf = en->pdf; // prolonged eye sub-path pdf

while (j>=0 && i<PathNode::max_eye_path_depth) {

double expdf = 0.; // eye path transition pdf

if (i == e) {

// transition probability for eye path at eyepath[e]

// going towards lightpath[l]

// j == l

expdf = etolpdf;

} else if (i == e+1) {

// evaluate transition probability for eye path arriving at

// lightpath[l] from eyepath[e] and going towards lightpath[l-1]

// j == l-1

class ScatteringNode* lscat = lightscatnodes[l];

float spdf = i < PathNode::min_eye_path_depth

? 1.

: lscat->unconstrained_survival_probability(ltoedir);

float dpdf;

lscat->eval(ltoedir, lscat->indir, 0, 0, &dpdf, 0);

expdf = spdf * dpdf * lrhpdf[l];

} else {

// transition probability for eye path at lightpath[j+1]

// from lightpath[j+2] and going towards lightpath[j]. Use

// precomputed probabilities for reverse light path.

// j < l-1

float spdf = i < PathNode::min_eye_path_depth

? 1.

: lrspdf[j+1];

expdf = spdf * lrdpdf[j+1] * lrhpdf[j+1];

}

epdf *= expdf;

// The eye sub-path now ends at lightpath[j]. Consider connection

// with light sub-path ending at lightpath[j-1].

j--; i++;
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double w = (j>=0) ? lightpath[j]->pdf * epdf : epdf;

sumw += WEIGHT(w);

}

return thisw / sumw;

}

// e==0 and l==0: join eye node with light source node

// (adds self-emitted radiance from a light source node to the

// image). This is handled by eyepath_on_light() for eye nodes

// of depth 1.

const Spectrum BiDirTracer::join_light_eye(void)

{

return Spectrum(0.);

}

const EmissionNode* BiDirTracer::convert_to_lightnode(int e)

{

if (eyescatnodes[e] == &eyebkgnode) {

// scattering node is background node

// convert to background emission node

eeb = BackgroundEmissionNode(eyebkgnode);

return &eeb;

} else {

// scattering node is surface node

// convert to surface emission node

ees = SurfaceEmissionNode(eyesurfnodes[e]);

return &ees;

}

}

// e>0 && l==-1: eye path arriving on a light source (that is:

// we check for every surface hit, whether it is a light source

// or not and take its self-emitted radiance into the incident

// direction into account if it is a light source.)

const Spectrum BiDirTracer::eyepath_on_light(const int e)

{

class ScatteringNode* es = eyescatnodes[e];

if (!es->on_light_source()) {

return Spectrum(0.);

}

if (e==1) {

// this is the complementary strategy of join_light_eye(), but

// join_light_eye() does nothing, so this strategy gets full weight.

return es->source_radiance() * es->value / es->pdf;

}

// Convert the scattering node into a corresponding emission node

const EmissionNode* ee = convert_to_lightnode(e);

class Spectrum Le; // self-emitted radiance
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float spdf, dpdf; // light path survival and direction s. pdf

ee->eval(es->indir, &Le, &spdf, &dpdf, 0);

// Compute weight of this strategy

double thisw = WEIGHT(es->pdf); // pdf of the eye path

// Compute sum of weights of all equivalent strategies. This is

// different from the other cases, because there is no connecting

// path segment here (for the same reason, there’s no

// additional visibility test for this strategy.)

double sumw = thisw;

int i=e, j=0;

double lpdf = ee->pdf; // pdf of the same position using emission sampling

while (i>=0 && j<PathNode::max_light_path_depth) {

double lxpdf = 0.;

if (j==0) {

lxpdf = spdf * dpdf * erhpdf[e];

} else {

double spdf = j<PathNode::min_light_path_depth

? 1.

: erspdf[i];

lxpdf = spdf * erdpdf[i] * erhpdf[i];

}

i--; j++;

double w = (i>=0) ? eyepath[i]->pdf * lpdf : lpdf;

if (i<=0) w *= nrparticles;

sumw += WEIGHT(w);

lpdf *= lxpdf;

}

return Le * es->value * (thisw / (es->pdf * sumw));

}

// e>0, l==0: join eye path vertex e>0 with light source node

// = standard path tracing

const Spectrum BiDirTracer::join_eyepath_with_light(const int e)

{

if (eyescatnodes[e] == &eyebkgnode ||

!visible(eyescatnodes[e], lightnode))

return Spectrum(0.);

class SurfaceNode *en = &eyesurfnodes[e];

class EmissionNode *ln = lightnode;

float ecos, lcos, espdf, lspdf, edpdf, ldpdf, dist;

class Spectrum efr, Le;

const Vec3 ltoedir = ln->dirto(en, &dist);

en->eval(-ltoedir, &efr, &espdf, &edpdf, &ecos);

ln->eval( ltoedir, &Le, &lspdf, &ldpdf, &lcos);

double invdist2 = 1. / (dist * dist);

float etolpdf = espdf * edpdf * lcos * invdist2;

float ltoepdf = lspdf * ldpdf * ecos * invdist2;

double G = ecos * lcos * invdist2;



�

�

�

�

�

�

�

�

328 A. A Class Library for Global Illumination

float w = weight(e, 0, ltoedir, ltoepdf, etolpdf);

return en->value * efr * Le * (G / (en->pdf * ln->pdf) * w);

}

// e==-1, l>0: corresponds with a light path node arriving on the

// surface of the camera. Since we are using a pinhole camera,

// this can not happen.

const Spectrum BiDirTracer::lightpath_on_camera(const int l)

{

return Spectrum(0.);

}

// e==0, l>0: Join light path vertex with eye node

// = standard light particle tracing

// Score contributes to different pixel than the one through

// which the eye path was traced. Therefore we add the score

// directly to the screen buffer and we return a null spectrum here.

const Spectrum BiDirTracer::join_lightpath_with_eye(const int l)

{

if (lightscatnodes[l] == &lightbkgnode)

return Spectrum(0.);

// find pixel through which the light path node is visible.

class SurfaceNode* ln = &lightsurfnodes[l];

double dist;

class Vec3 ltoedir = ln->position.dirto(scrn->eye, &dist);

float i, j;

if (!scrn->getPixelCoord(-ltoedir, &i, &j) ||

!visible(&eyenode, ln))

return Spectrum(0.);

class EyeNode e(i, j); // EyeNode for pixel

class Spectrum We; // pixel measurement value

float espdf, edpdf, ecos, lcos; // path survival/dir.sel. pdf and cos.

e.eval(-ltoedir, &We, &espdf, &edpdf, &ecos);

class Spectrum score = ln->scatter(ltoedir, &lcos);

float invdist2 = 1./(dist*dist); // inverse square distance

score *= We * (ecos * lcos * invdist2);

float etolpdf = espdf * edpdf * lcos * invdist2;

float ltoepdf = 0.; // no chance of hitting eye point (pinhole cam)

float w = weight(0, l, ltoedir, ltoepdf, etolpdf);

scrn->addPixel(i, j, score * (w / nrparticles));

return Spectrum(0.);

}

// e>0, l>0: join eye and light sub-path at intermediate nodes

const Spectrum BiDirTracer::join_intermediate(const int e, const int l)

{

if (eyescatnodes[e] == &eyebkgnode ||

lightscatnodes[l] == &lightbkgnode ||
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!visible(eyescatnodes[e], lightscatnodes[l]))

return Spectrum(0.);

class SurfaceNode *en = &eyesurfnodes[e]; // eye sub-path end

class SurfaceNode *ln = &lightsurfnodes[l]; // light sub-path end

double dist; // dist. and dir. between en/ln

class Vec3 ltoedir = (en->position - ln->position).normalized(&dist);

float ecos, lcos, espdf, lspdf, edpdf, ldpdf;// cos., surv,pdf, dir.sel.pdf

class Spectrum efr, lfr; // BSDF at eye/light node

en->eval(en->indir, -ltoedir, &efr, &espdf, &edpdf, &ecos);

ln->eval(ln->indir, ltoedir, &lfr, &lspdf, &ldpdf, &lcos);

float invdist2 = 1. / (dist * dist); // inverse square distance

float G = ecos * lcos * invdist2; // geometric factor

float etolpdf = espdf * edpdf * lcos * invdist2; // transition pdf en->ln

float ltoepdf = lspdf * ldpdf * ecos * invdist2; // transition pdf ln->en

float w = weight(e, l, ltoedir, ltoepdf, etolpdf);

return en->value * efr * lfr * ln->value * (G / (en->pdf * ln->pdf) * w);

}

// joins the eye sub-path vertex of depth e with light sub-path

// vertex of depth l. e or l equal to -1 means empty sub-path.

const Spectrum BiDirTracer::joinat(const int e, const int l)

{

class Spectrum score(0.);

if (e==0 && l==0)

score = join_light_eye();

else if (e<=0 && l<=0) // eye point on light or light node on camera

score = Spectrum(0.); // or both sub-paths empty: can’t happen

else if (e==-1)

score = lightpath_on_camera(l);

else if (l==-1)

score = eyepath_on_light(e);

else if (e==0)

score = join_lightpath_with_eye(l);

else if (l==0)

score = join_eyepath_with_light(e);

else

score = join_intermediate(e, l);

return score;

}

const Spectrum BiDirTracer::join(void)

{

// pre-calculate probabilities of sampling the eye and light path

// in reverse direction.

compute_reverse_eyepath_probs();

compute_reverse_lightpath_probs();

class Spectrum score(0.);

// t is total combined path length: length of the eye sub-path +
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// length of the light sub-path + 1 for the connecting segment.

// A length of ’-1’ indicates an empty path (no nodes)

for (int t=1; t<=eyepathlen+lightpathlen+1

&& t<=max_combined_path_length; t++) {

for (int e=-1; e<=eyepathlen; e++) { // e is eye sub-path length

int l=t-e-1; // l is light sub-path length

if (l>=-1 && l<=lightpathlen)

score += joinat(e, l);

}

}

return score;

}

const Spectrum BiDirTracer::tracepixel(const int i, const int j)

{

// trace eye path

eyenode = EyeNode(i,j);

eyepathlen = trace_eye_path(&eyenode);

// sample light sources and trace light path

lightnode = 0;

while (!lightnode) lightnode = lightsampler->sample(&senode, &benode);

lightpathlen = trace_light_path(lightnode);

// join eye and light paths

return join();

}

// pre-calculates constants and allocates memory for arrays needed

// for rendering a frame.

void BiDirTracer::setup(int orgi, int orgj, int di, int dj)

{

PathNode::min_light_path_depth = min_light_path_length;

PathNode::max_light_path_depth = max_light_path_length;

PathNode::min_eye_path_depth = min_eye_path_length;

PathNode::max_eye_path_depth = max_eye_path_length;

eyesurfnodes = new class SurfaceNode [PathNode::max_eye_path_depth+1];

lightsurfnodes = new class SurfaceNode [PathNode::max_light_path_depth+1];

eyescatnodes = new class ScatteringNode* [PathNode::max_eye_path_depth+1];

lightscatnodes = new class ScatteringNode* [PathNode::max_light_path_depth+1];

lightpath = new class PathNode* [PathNode::max_light_path_depth+1];

eyepath = new class PathNode* [PathNode::max_eye_path_depth+1];

erdpdf = new float [PathNode::max_eye_path_depth+1];

lrdpdf = new float [PathNode::max_light_path_depth+1];

erspdf = new float [PathNode::max_eye_path_depth+1];

lrspdf = new float [PathNode::max_light_path_depth+1];

erhpdf = new float [PathNode::max_eye_path_depth+1];

lrhpdf = new float [PathNode::max_light_path_depth+1];

int npixx = scrn->width;
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int npixy = scrn->height;

nrparticles = npixx * npixy;

}

// undoes the effects of setup().

void BiDirTracer::cleanup(void)

{

delete [] eyesurfnodes;

delete [] lightsurfnodes;

delete [] eyescatnodes;

delete [] lightscatnodes;

delete [] lightpath;

delete [] eyepath;

delete [] erdpdf;

delete [] lrdpdf;

delete [] erspdf;

delete [] lrspdf;

delete [] erhpdf;

delete [] lrhpdf;

}

void BiDirTracer::trace(void)

{

setup();

for (int j=0; j<scrn->height; j++) {

for (int i=0; i<scrn->width; i++) {

scrn->addPixel(i, j, tracepixel(i, j));

}

}

cleanup();

}
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Figure A.2. Multiple importance light source sampling results obtained with the
implementation shown in this section: The spheres on top are diffuse. They
become more and more mirror-like towards the bottom. The left column of
pictures was generated using BSDF sampling only. BSDF sampling works well
for specular-like surfaces. The middle column shows results obtained with light
sampling only. Light sampling is at its best for diffuse surfaces. The right col-
umn shows that combining BSDF sampling and light sampling using multiple
importance sampling [201] yields better results overall. (See Plate XVII.)
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Hemispherical Coordinates

B.1 Hemispherical Coordinates

In photorealistic rendering, one often wants to work with functions defined
over a hemisphere (one-half of a sphere), centered around a surface point.
A hemisphere consists of all the directions in which one can look when
standing at the surface point: one can look from the horizon all the way up
to the zenith and all around. A hemisphere is therefore a two-dimensional
space, in which each point on the hemisphere defines a direction. Spherical
coordinates are a useful way of parameterizing the hemisphere.

In the spherical coordinate system, each direction is characterized by
two angles (Figure B.1). The first angle, ϕ, represents the azimuth and
is measured with regard to an arbitrary axis located in the tangent plane
at x; the second angle, θ, gives the elevation, measured from the normal
vector Nx at surface point x. Writing directions using capital Greek letters,
we can express direction Θ as the pair (ϕ, θ).

Figure B.1. Hemispherical coordinates.
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The values for the angles ϕ and θ belong to the intervals

ϕ ∈ [0, 2π],
θ ∈ [0, π/2].

So far, we have defined directions (or points) on the hemisphere. If
we want to specify every three-dimensional point in space (not only points
on the hemisphere), a distance r along the direction Θ is added. Any
three-dimensional point is then defined by three coordinates (ϕ, θ, r). The
transformation between Cartesian coordinates and spherical coordinates
(place x at the origin, Nx is parallel to the Z-axis, and at the X-axis the
angle ϕ = 0) is straightforward using some elementary trigonometry:

x = r cosϕ sin θ,
y = r sinϕ sin θ,
z = r cos θ,

or also

r =
√
x2 + y2 + z2,

tanϕ = y/x,

tan θ =

√
x2 + y2

z
.

In most rendering algorithms, usually only hemispherical coordinates
without the distance parameter r are used. This is because we are inter-
ested in integrating functions that are defined over directions incident at a
given surface point rather than in expressing functions in three-dimensional
space in full spherical coordinates.

B.2 Solid Angle

In order to integrate functions over the hemisphere, a measure on the hemi-
sphere is needed. That measure is the solid angle.

A finite solid angle Ω subtended by an area on the hemisphere is de-
fined as the total area divided by the squared radius of the hemisphere
(Figure B.2):

Ω =
A

r2
.
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Figure B.2. Solid angle.

If the radius r = 1, the solid angle is simply the area on the hemisphere.
Since the area of the hemisphere equals 2πr2, the solid angle covered by the
entire hemisphere equals 2π; the solid angle covered by a complete sphere
equals 4π. Solid angles are dimensionless but are expressed in steradians
(sr). Note that the solid angle is not dependent on the shape of surface A,
but is only dependent on the total area.

To compute the solid angle subtended by an arbitrary surface or object
in space, we first project the surface or object on the hemisphere and
compute the solid angle of the projection (Figure B.3). Note that two
objects different in shape can still subtend the same solid angle.

Figure B.3. Solid angle subtended by an arbitrary object.
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Figure B.4. Solid angle for small surfaces.

For small surfaces, the following approximation can be used to compute
the solid angle subtended by a surface or object (Figure B.4):

Ω =
A cosα
d2

.

A cosα is an approximation for the projected surface area.

B.3 Integrating over the Hemisphere

Just as we can define differential surface areas or differential volumes to
integrate functions in Cartesian XY or XY Z space, we can define differ-
ential solid angles to integrate functions in hemispherical space. Compared
to Cartesian spaces, there is a difference: the “area” on the hemisphere
“swept” out by a differential dΘ is larger near the horizon than near the
pole. The differential solid angle takes this into account by using a sin(θ)
factor (this factor can easily be deduced from the Jacobian when applying
a coordinate transform from Cartesian to hemispherical coordinates).

A differential solid angle, centered around direction Θ, is then written as

dωΘ = sin θdθdϕ.

Integrating a function f(Θ) = f(ϕ, θ) over the hemisphere is then ex-
pressed as ∫

Ω

f(Θ)dωΘ =
∫ 2π

0

∫ π/2

0

f(ϕ, θ) sin θdθdϕ.
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Example 1 (Computing the area of the hemisphere.) Computing the area of
the hemisphere can be achieved by simply integrating the differential solid
angle over the entire integration domain:∫

Ω

dωΘ =
∫ 2π

0

dϕ

∫ π/2

0

sin θdθ

=
∫ 2π

0

dϕ[− cos θ]π/2
0

=
∫ 2π

0

1 · dϕ

= 2π.

Example 2 (Integrating a cosine lobe.) Integrating a cosine lobe over the
hemisphere is useful when working with certain BRDF models that use
cosine lobes as their fundamental building blocks (e.g., the Phong or Lafor-
tune models). A cosine lobe, centered around Nx, to the power N , can be
integrated in a straightforward manner:∫

Ω

cosN (Θ, Nx)dωΘ =
∫ 2π

0

dϕ

∫ π/2

0

cosN θ sin θdθ

=
∫ 2π

0

dϕ[−cosN+1 θ

N + 1
]π/2
0

=
∫ 2π

0

1
N + 1

· dϕ

=
2π

N + 1
.

B.4 Hemisphere-Area Transformation

In rendering algorithms, it is sometimes more convenient to express an
integral over the hemisphere as an integral over visible surfaces seen from
x. For example, if we want to compute all incident light at a point due to
a distant light source, we can integrate over all directions within the solid
angle subtended by the light source, or we can integrate over the actual
area of the light source. To transform a hemispherical integral into an area
integral, the relationship between a differential surface and a differential
solid angle must be used:

dωΘ =
cos θydAy

r2xy

.
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dAyNy

rxy

Figure B.5. Area to solid angle conversion.

The differential solid angle dωΘ around direction Θ is transformed to
a differential surface dAy at surface point y (Figure B.5). Therefore, any
integral over the hemisphere can also be written as an integral over each
visible differential surface dAy in each direction Θ:∫

Ω

f(Θ)dωΘ =
∫

A

f(y)
cos θy

r2xy

dAy.
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Theoretical Analysis of
Stochastic Relaxation Radiosity

In this appendix, we show how the variance of the incremental shooting
iterative algorithm of Section 6.3 can be analyzed, and demonstrate how a
number of practical results can be derived from it. The analysis of the other
algorithms is very similar and is a recommended exercise for the interested
reader.

We start with the derivation of the variance of the incremental shooting
iterative algorithm. The first thing to point out is that the resulting radiosi-
ties are obtained as the sum of increments computed in several iteration
steps. We first derive the variance of a single iteration and next show how
the variance on the converged results is composed from the single-iteration
variances.

Variance of a single incremental shooting iteration. The variance of a single
incremental shooting iteration can be derived by straightforward applica-
tion of the definition of Monte Carlo summation variance:

S =
n∑

i=1

ai sum to be computed (n terms),

S ≈ ais

pis

single-sample estimate,

V [Ŝ] =
n∑

i=1

a2
i

pi
− S2 single-sample variance.

For N samples, the variance is V [Ŝ]/N .
The sum to be estimated here is given in Equation 6.11. The probabil-

ities p for picking terms from the sum are in Equation 6.12. The resulting
single-sample variance of the kth incremental shooting iteration is

V [∆̂P
(k+1)

i ] = ρi∆P
(k)
T ∆P (k+1)

i −
(
∆P (k+1)

i

)2

. (C.1)
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The latter term is usually negligible compared to the former (∆P (k+1)
i �

∆P (k)
T ).

Variance of a sequence of incremental shooting iterations until convergence.
The solution Pi is eventually obtained as a sum of increments ∆P (k)

i com-
puted in each iteration step. The single-sample variance on each increment
∆P (k)

i is given above in Equation C.1. Assuming that subsequent itera-
tions are independent (which is to good approximation true in practice),
and that Nk independent samples are used in the kth iteration, the variance
on the result of K iterations will be

V [P̂i] =
K∑

k=1

1
Nk

V [∆P̂ (k)
i ].

Optimal allocation of N =
∑K

k=1Nk samples over the individual iter-
ations is obtained if 1/Nk is inversely proportional to V [∆P̂ (k)

i ] (Section
3.6.5). For all patches i, V [∆P̂ (k)

i ] (Equation C.1) is approximately pro-
portional to P (k−1)

T , suggesting that we choose the number of samples in
the kth iteration proportional to the total unshot power ∆P (k−1)

T to be
propagated in that iteration:

Nk ≈ N
∆P (k−1)

T

PT
.

When Nk drops below a small threshold, convergence has been reached.
Combining all above results, it can be shown that the variance on the
radiosity Bi after convergence is to good approximation given by

V [B̂i] ≈
PT

N

ρi(Bi −Be
i )

Ai
. (C.2)

Time complexity. We now turn to the question of how the number of sam-
ples N needs to be varied as a function of the number of patches n in order
to compute all radiosities Bi to prescribed accuracy ε with 99.7% confi-
dence. According to the central limit theorem (Section 3.4.4), the number
of samples N shall be chosen so that

3

√
V [B̂i]
N

≤ ε

for all i. Filling in Equation C.2 then yields

N ≥ 9PT

ε2
·max

i

ρi(Bi −Be
i )

Ai
. (C.3)
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This formula allows us to examine how the number of rays to be shot
must be increased as a scene to be rendered is “made larger.” There are,
however, many possible scenarios of how a scene can be “made larger.” For
instance, new objects can be added, or one can switch to a finer tessellation
of the surfaces in the scene without adding new objects. If all patches in
a scene are split in two, the required number of rays in order to obtain a
given accuracy will need to be doubled, as dividing the patches (asymptot-
ically) has no effect on reflectivities and radiosities. The cost of shooting
a ray is often assumed to be logarithmic in the number of polygons. Al-
though the truth is much more complicated, it is often stated that Monte
Carlo radiosity algorithms have log-linear complexity. In any case, their
complexity is much lower than quadratic. This result is not only valid for
incremental stochastic shooting of power but also for other Monte Carlo
radiosity algorithms based on shooting [169, 162, 15].

A heuristic for choosing the number of samples N. We have demonstrated
that the number of samples in each incremental shooting iteration shall
be chosen proportional to the amount of power to be distributed in that
iteration. In other words, each ray to be shot shall propagate the same
“quantum” of light energy. We have not yet answered the question of how
large the quanta should be, however, or equivalently, how many rays N
to choose for a complete sequence of incremental shooting iterations to
convergence. That’s the point of this paragraph.

Equation C.3 allows us to derive the answer. Suppose one wants to
choose N so that with 99.7% confidence, the error ε on any patch i will be
less than the average radiosity Bav = PT /AT in the scene. The total power
PT in Equation C.3 can then be replaced by AT ε. Typically, Be

i = 0 for
most patches in the scene. Approximating Bi−Be

i by the average radiosity,
and thus by ε, then yields

N ≈ 9 ·max
i

ρiAT

Ai
. (C.4)

In practice, it makes a lot of sense to skip, for instance, the 10% of
patches in a scene with the largest ratio ρi/Ai. Note that a rough heuristic
for N suffices: a higher accuracy can always be obtained by averaging the
result of several independent runs of the algorithm.
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Snell’s law, 36
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weighted light source selection, 308
Whitted-style ray tracing, 143
world space, 151, 286
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